Tyler J. Burns

tjburns@alumni.stanford.edu • Berlin, Germany• +49 176 32372509

EXPERIENCE

PRESIDIO LABS Berlin, Germany

1/23-8/23 CTO and co-founder

Built out the analytical pipelines necessary for providing bioinformatics support services for academic laboratories. Developed teaching curricula to help students and postdocs learn bioinformatics.

BURNS LIFE SCIENCES CONSULTING GMBH

Berlin, Germany

CEO and founder

3/20-present

Biology and bioinformatics support, research, and education. Projects have included domains of flow and mass cytometry, single-cell sequencing, high-dimensional imaging, spatial transcriptomics, multi-modal data integration, and biosecurity.

FREELANCE Berlin, Germany Consultant 9/17-3/20

Bioinformatics and computational biology support for industry. Projects focused on high-dimensional single-cell analysis. Developed numerous data analysis pipelines accordingly.

GERMAN RHEUMATISM RESEARCH CENTER

Berlin, Germany

Computational biologist

9/17-11/18

Developed analysis pipelines for mass cytometry data. Individual analysis projects included biological interpretation of results. Regularly gave institute-wide seminars and talks.

EDUCATION

Stanford University School of Medicine, Stanford, CA

PhD, Cancer Biology. Thesis laboratory: Garry Nolan Stanford University, Stanford, CA

9/11-8/17

BA with Honors, Human Biology

9/05-12/08

SELECT PUBLICATIONS, PATENTS, SOFTWARE

My academic research focused on developing novel methods for flow and mass cytometry, both on the wet-lab and dry-lab side. This included a method for detecting nuclear localization (SLA), and a method for KNNbased analysis and visualization of mass cytometry data (Sconify).

Select Publications

- Burns, T. J., Frei, A. P., Gherardini, P. F., Bava, F. A., Batchelder, J. E., Yoshiyasu, Y., et al. (2017). High-throughput precision measurement of subcellular localization in single cells. Cytometry Part A, 1–9. http://doi.org/10.1002/cyto.a.23054
- Burns, T. J., Nolan G. P., Samusik N. (2018) Continuous visualization of multiple biological conditions within single cell data. BioRxiv.

- Budzinski L, Schulz AR, Baumgart S, **Burns T**, Rose T, Hirseland H, Mei HE (2019) Osmium-Labeled Microspheres for Bead-Based Assays in Mass Cytometry. *Journal of Immunology*. May 15;202(10):3103-3112. doi: 10.4049/jimmunol.1801640.
- Burns M, Schulz AR, Kunkel D, Hönig M, Warth S, Bengsch B, **Burns T**, Reinhardt J, Grützkau A, Yaspo ML, Sodenkamp J, Hoffmann U, Mei HE. (2020) Mass Cytometry-A Tool for the Curious: Networking in Berlin. *Cytometry Part A*. Aug;97(8):764-767. doi: 10.1002/cyto.a.24015

Patents

Karen Sachs, Mohammed N. Al-Quaraishi, Solomon Itani, Garry P. Nolan, Sean C. Bendall, Tyler
J. Burns Compressed Sensing for Simultaneous Measurement of Multiple Different Biological
Molecule Types in a Sample. Patent number US20140106976A1.

Software

• Burns, T. J. (2018) Bioconductor Package "Sconify." A toolkit for performing KNN-based statistics in flow and mass cytometry data.