A visual interrogation of dimension reduction tools for single-cell analysis

Tyler J Burns, PhD AG Mei, DRFZ Berlin

Outline

- Part 1: Introduction
- Part 2: Preservation of local structure
- Part 3: Preservation of global structure

Outline

• Part 1: Introduction

- Part 2: Preservation of local structure
- Part 3: Preservation of global structure

Dimension reduction makes large amounts of information human-readable without too much human work

CD235 61 **CD19** CD11b CCR7 <dbl> <db1> $\langle db \rangle \rangle$ $\langle dbl \rangle$ <dbl> <dbl> $\langle db \rangle \rangle$ $\langle dbl \rangle$ 0.965 0.149 0.110 0.251 0.122 4.20 0.0795 0.100 0.0660 0.0226 0.0246 0.117 0.102 0.0859 1.28 2.39 0.164 0.371 0.355 0.00938 0.0435 0.0368 0.0725 2.37 0.0527 0.0280 0.0478 0.0522 0.396 0.1000 1.31 .001<u>46</u> 0.074<u>9</u> 0.068<u>1</u> $0.186 \quad 0.321 \quad 0.0664 \quad 0.0239 \quad 0.0965 \quad 0.114$ 0.141 0.127 0.378 0.0597 0.0377 0.565 0.145 0.184 0.151 0.102 0.0396 0.637 0.0602 1.90 0.101 0.0496 0.014<u>4</u> 0.102 0.846 0.053<u>1</u> 0.040<u>6</u> 0.014<u>1</u> 1.23 3.17 0.265 0.252 2.54 0.939 0.929 0.059<u>5</u> 0.030<u>5</u> 0.028<u>3</u> 2.70 0.030<u>3</u> 0.023<u>6</u> 0.064<u>6</u> 0.029<u>3</u> 0.070<u>1</u> 0.103 0.041<u>3</u> 0.078<u>2</u> 0.613 0.167 0.00865 0.00632 1.26 0.127 0.315 0.0410 0.184 0.0140 0.00240 0.0855 0.196 0.727 0.150 0.0864 8 0.0512 0.385 0.0642 0.116 1.54 0.713 0.0576 0.0625 0.00486 0.0715 0.146 0.134 0.155 0.0125 0.166 0.284 0.0826 0.262 0.181 0.0847 2.49 0.135 0.168 0.0706 0.109 0.0492 0.0467 0.141 0.175 0.0554 0.274 0.142 10 0.123 0.0829 0.0339 0.127 1.21 0.0545 0.0907 0.119 0.0835 0.129 0.0768 0.134 0.0329 0.0990 0.0405 0.151 with 9,990 more rows, and 14 more variables: CD16 <dbl>, CD25 <dbl>, CD3 <dbl>, CD66 <dbl>, CD56 <dbl>, HLADR <dbl>, V1 <dbl>, V2 <dbl>, BC1 <dbl>, BC2 <dbl>, BC3 <dbl>, BC4 <dbl>, BC5 <dbl>, BC5 <dbl>, BC6 <dbl>

Amir et al, Nat Biotechnology 2013

Early dimension reduction tools: Principal Component Analysis (PCA)

[559]

LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. By KABL PEARSON, F.R.S., University College, London*. (1901)

(1) IN many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensioned space by the "best-fitting" straight line or plane. Analytically this consists in taking

> $y = a_0 + a_1 x$, or $z = a_0 + a_1 x + b_1 y$, or $z = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \ldots + a_n x_n$,

where $y, x, z, x_1, x_2, \ldots x_n$ are variables, and determining the "best" values for the constants $a_0, a_1, b_1, a_0, a_1, a_2, a_3, \ldots a_n$ in relation to the observed corresponding values of the variables. In nearly all the cases dealt with in the text-books of least squares, the variables on the right of our equations are treated as the independent, those on the left as the dependent variables. The result of this treatment is that we get one straight line or plane if we treat some one variable as independent, and a quite different one if we treat another variable as the independent variable. There is no paradox about this; it is, in fact, an easily understood and most imAxes span the direction with highest variance

Samusik_01 bone marrow CyTOF dataset

https://en.wikipedia.org/wiki/Principal_component_analysis

t-SNE preserves local information, produces more well clustered maps

Visualizing Data using t-SNE

Laurens van der Maaten

LVDMAATEN@GMAIL.COM

HINTON@CS.TORONTO.EDU

TiCC Tilburg University P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton

Department of Computer Science University of Toronto 6 King's College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

Abstract

We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms, multidimensional scaling

viSNE: the adaptation of t-SNE to CyTOF

<u>Nat Biotechnol</u>. Author manuscript; available in PMC 2014 Jul 1. Published in final edited form as: <u>Nat Biotechnol. 2013 Jun; 31(6): 545–552.</u> Published online 2013 May 19. doi: <u>10.1038/nbt.2594</u> PMCID: PMC4076922 NIHMSID: NIHMS586764 PMID: <u>23685480</u>

viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

El-ad David Amir,¹ Kara L Davis,^{2,3} Michelle D Tadmor,^{1,3} Erin F Simonds,^{2,3} Jacob H Levine,^{1,3} Sean C Bendall,^{2,3} Daniel K Shenfeld,^{1,3} Smita Krishnaswamy,¹ Garry P Nolan,^{2,4} and Dana Pe'er^{1,4,*}

Author information ► Copyright and License information ► Disclaimer

The publisher's final edited version of this article is available at <u>Nat Biotechnol</u> See other articles in PMC that <u>cite</u> the published article.

Abstract

Go to: 🕑

High-dimensional single-cell technologies are revolutionizing the way we understand biological systems. Technologies such as mass cytometry measure dozens of parameters simultaneously in individual cells, making interpretation daunting. We developed viSNE, a tool to map high-dimensional cytometry data onto 2D while conserving high-dimensional structure. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow maps into a canonical shape that separates between immune subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are distinct from the healthy map and from each other. viSNE highlights structure in the heterogeneity of surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a rare leukemia population in minimal residual disease settings. As several new technologies raise the number of simultaneously measured parameters in each cell to the hundreds, viSNE will become a mainstay in analyzing and interpreting such experiments.

Emergence of UMAP as an alternative to t-SNE for single-cell analysis

nature

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland McInnes Tutte Institute for Mathematics and Computing leland.mcinnes@gmail.com

John Healy Tutte Institute for Mathematics and Computing jchealy@gmail.com

> James Melville jlmelville@gmail.com

December 7, 2018

biotechnology Dimensionality reduction for visualizing single-cell data using UMAP

ANALYSIS

Etienne Becht¹, Leland McInnes², John Healy², Charles-Antoine Dutertre¹, Immanuel W H Kwok¹, Lai Guan Ng¹, Florent Ginhoux¹ & Evan W Newell^{1,3}

What PCA, t-SNE and UMAP look like on a bone marrow CyTOF dataset

Dataset: Samusik et al, Nature Methods 2016

t-SNE and UMAP are accessible from singlecell analysis user interfaces

Cytobank

FlowJo

Others: Astrolabe, OMIQ, Tercen

What additional information about dimension reduction maps should we know for their proper use?

Credit for the following t-SNE and UMAP explanations

people know how it works. Here's the dope! Also, if you'd like to see a code example in R, here's one:

SHOW MORE

The goal of t-SNE and UMAP is to reduce dimensions while preserving specific information about each cell's neighbors

Higher dimensional

space

Low dimensional embedding

t-SNE and UMAP start with a low-dimensional embedding of randomly placed points

t-SNE weights its neighbors based on distance fitted to a distribution

Image source: YouTube: StatQuest with Josh Starmer: *t-SNE, clearly explained*

UMAP weights its neighbors based on topology

Find the probability that a 1-simplex exists between two points in a neighborhood

Resulting neighbor graph is a bunch of simplexes glued together (simplicial complex). Simpler structure but preserves topological information.

Image source: https://en.wikipedia.org/wiki/Simplicial complex

The weighted neighborhood graphs can be represented as similarity matrices

Image source: YouTube: StatQuest with Josh Starmer: *t-SNE, clearly explained*

Make these similarity matrices as similar to each other as possible, and then you're done

Image source: YouTube: StatQuest with Josh Starmer: *t-SNE, clearly explained*

Make these similarity matrices as similar to each other as possible, and then you're done

UMAP also makes a 2-D simplicial complex

UMAP only moves one or a few cells at a time, rather than all of them as t-SNE does.

> A cell will move toward one cell and away from another

Dimension reduction maps group similar cells near each other

Outline

- Part 1: Introduction
- Part 2: Preservation of local structure
- Part 3: Preservation of global structure

KNN to determine preservation of lower dimensional embeddings

Bioconductor package: Sconify

Global KNN comparison between t-SNE, UMAP, and PCA

Dataset: Samusik Bone marrow (public) Num. cells: 100k

X axis is on a log scale

t-SNE outperforms UMAP in KNN preservation, has been observed in scRNA seq data

ARTICLE

https://doi.org/10.1038/s41467-019-13056-x OPEN

The art of using t-SNE for single-cell transcriptomics (2019)

Dmitry Kobak 1 & Philipp Berens 1,2,3,4*

(Also did KNN preservation, K = 10 only)

To compare UMAP with our t-SNE approach in terms of preservation of global structure, we first ran UMAP on the synthetic and on the Tasic et al.³ data sets (Supplementary Fig. 2). We used the default UMAP parameters, and also modified the two key parameters (number of neighbours and tightness of the embedding) to produce a more t-SNE-like embedding. In both cases and for both data sets, all three metrics (KNN, KNC, and CPD) were considerably lower than with our t-SNE approach.

Results confirmed across 3 datasets, but with very large standard deviation

Does dimension reduction maps preserve some regions better than others (should and/or how should we gate the map?)

People are already gating and clustering dimension reduction maps. Guidelines are needed!

Michael Wong and Evan Newell: Manually gating a t-SNE map

Wong *et al, Cell* 2016

Shekar *et al*,

PNAS 2014

Accense (Petter Brodin): Clustering a t-SNE map

Color a dimension reduction map by it's own neighborhood preservation, given k

Local comparison for t-SNE

dimr[[1]]

dimr[[1]]

Local comparison for UMAP

t-SNE and UMAP are preserving the data in a similar manner

K = 100

K = 1000

Part 1 conclusions

- t-SNE outperforms UMAP (though only slightly) in KNN preservation
- Both t-SNE and UMAP outperform PCA in KNN preservation
- KNN preservation performance varies in specific patterns across both t-SNE and UMAP
- t-SNE and UMAP have better KNN preservation in smaller islands/corridors in the data. Implications on how to gate the maps

Outline

- Part 1: Introduction
- Part 2: Preservation of local structure
- Part 3: Preservation of global structure

If a "gate" on the map has 30% KNN preservation, where are the other cells?

KNN identity for t-SNE, k = 1000, cell 1

High-D neighbors

KNN identity for t-SNE, k = 1000, cell 4

High-D neighbors

KNN identity for t-SNE, k = 1000, cell 6

Dimr neighbors

nn_bool 1.00 0.75 0.50 0.25 0.00

KNN identity for UMAP, k = 1000, cell 1

High-D neighbors

KNN identity for UMAP, k = 1000, cell 4

High-D neighbors

KNN identity for UMAP, k = 1000, cell 6

High-D neighbors

Use my tool knn_sleepwalk see the feature space KNN for your own data

Global preservation, measured by pairwise distances

Dimensionality reduction for visualizing single-cell data using UMAP

Etienne Becht¹, Leland McInnes², John Healy², Charles-Antoine Dutertre¹, Immanuel W H Kwok¹, Lai Guan Ng¹, Florent Ginhoux¹ & Evan W Newell^{1,3}

Bioconductor package: Sconify

Global KFN comparison between PCA, t-SNE and UMAP (10k cell subsample)

therefore concerns itself primarily with accurately representing local structure. While we believe that UMAP can capture more global structure than these other techniques, it remains true that if global structure is of primary interest then UMAP may not be the best choice for dimension reduction.

Mcinness *et al*, *Arxiv* 2018 (the UMAP paper)

Across 3 datasets, bar plots with error bars and p values

Part 3 conclusions

- Nearest neighborhoods computed from high-D space and dimension reduction space occupy similar regions
- Positioning of the islands relative to each other could be arbitrary
- K-farthest neighborhood (KFN) preservation reveals global structure preservation: PCA > UMAP > t-SNE

Next steps: initialization matters

UMAP does not preserve global structure any better than t-SNE when using the same initialization

Dmitry Kobak¹ and George C. Linderman²

¹Institute for Ophthalmic Research, University of Tübingen, Germany ²Applied Mathematics Program, Yale University, New Haven, CT, USA dmitry.kobak@uni-tuebingen.de, george.linderman@yale.edu

(BioRxiv)

Toward a "safe" manual gating interface for dimension reduction maps

nnvis: an R package to do neighbor-based preservation analysis on your dimension reductions

Home / GitHub / tjburns08/nnvis: Make KNN-based identity comparisons between different manifolds (eg. original space vs t-SNE space)

tjburns08/nnvis: Make KNN-based identity comparisons between different manifolds (eg. original space vs t-SNE space)

This package examines the quality of a low-dimensional embedding by comparing the membership of each cell's k-nearest neighbors (KNN) in original high dimensional marker space with this cell's KNN in the low-dimensional space. Comparisons can be visualized with average fidelity plots for different values of K, or the t-SNE maps themselves can be colored by their own fidelity. The package also provides wrappers for popular low dimensional embeddings.

Getting started	Browse package contents
README.md	D Vignettes
	Man pages
	API and functions
	▷ Files
	Search within the tjburns08/nnvis package

Acknowledgments

Heike Hirseland Antonia Niedobitek René Riedel Sarah Gräßle Marie Urbicht Silke Stanislawiak

Sabine BaumgartAndreas GrützkauPawel DurekHenrik MeiAxel Schulz

