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Dimension reduction makes large amounts of information
human-readable without too much human work
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Early dimension reduction tools: Principal
Component Analysis (PCA)
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LIII. On Lines and Planes of Closest Fitto Systems of Points Axes span the direction with Samusik_01 bone marrow
in Space. By Karr Prarson, F.R.S., University College, hichest variance CyTOF dataset
London ¥, (1901) . g

() I\T many physical, statistical, and biological investi-

gations it is desirable to represent a system of
points in anne, three, or higher dimensioned space by the |
“ best-fitting straight line or plane. Analytically this
consists in taking

y=ay+ax, or z=a+azr+by, :
or z=ay,+a,&; + as%y + gz + . . . +ay,, 2
where vy, &, 2, 21, &y, . .. &n are variables, and determining the of

‘“ best >’ values for the constants ay, a,, b, a,, a;, as, a3, ... an
in relation to the observed corresponding values of the
variables. In nearly all the cases dealt with in the text-books —af
of least squares, the variables on the right of our equations :
are treated as the independent, those on the left as the de- "8 6 -4 -2 0 2 4 6 8 10 : v : ;
pendent variables. The result of this treatment is that we -

get one straight line or plane if we treat some one variable as
independent, and a quite different one if we treat another
variable as the independent variable. There is no paradox

about this; it is, in fact, an easily understood and most im-
nmwdacid frandicwn AL Lhi dlhaavee AL n asendacen Al anwaslalad

https://en.wikipedia.org/wiki/Principal_component_analysis
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t-SNE preserves local information, produces
more well clustered maps
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Abstract

We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each
datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic
Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces
significantly better visualizations by reducing the tendency to crowd points together in the center
of the map. t-SNE is better than existing techniques at creating a single map that reveals structure
at many different scales. This is particularly important for high-dimensional data that lie on several
different, but related, low-dimensional manifolds, such as images of objects from multiple classes
seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how
t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the
data to influence the way in which a subset of the data is displayed. We illustrate the performance of
t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization
techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualiza- o
tions produced by t-SNE are significantly better than those produced by the other techniques on
almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms,
multidimensional scaling

(a) Visualization by t-SNE.




VISNE: the adaptation of t-SNE to CyTOF
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VISNE enables visualization of high dimensional single-cell data and reveals
phenotypic heterogeneity of leukemia
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Abstract Go to: ¥

High-dimensional single-cell technologies are revolutionizing the way we understand biological systems.
Technologies such as mass cytometry measure dozens of parameters simultaneously in individual cells,
making interpretation daunting. We developed viSNE, a tool to map high-dimensional cytometry data onto
2D while conserving high-dimensional structure. We integrated mass cytometry with viSNE to map healthy
and cancerous bone marrow samples. Healthy bone marrow maps into a canonical shape that separates
between immune subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are
distinct from the healthy map and from each other. viSNE highlights structure in the heterogeneity of
surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a
rare leukemia population in minimal residual disease settings. As several new technologies raise the
number of simultaneously measured parameters in each cell to the hundreds, viSNE will become a
mainstay in analyzing and interpreting such experiments.
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Emergence of UMAP as an alternative to t-
SNE for single-cell analysis
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Dimensionality reduction for visualizing single-cell data
using UMAP
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What PCA, t-SNE and UMAP look like on a
bone marrow CyTOF dataset

PCA t-SNE UMAP

ne[[2]]

0 10 : 3
peal[1] tsne[[1]] umap([1]]

Dataset: Samusik et al, Nature Methods 2016



t-SNE and UMAP are accessible from single-
cell analysis user interfaces
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What additional information about dimension reduction
maps should we know for their proper use?




Credit for the following t-SNE and UMAP explanations

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction | SciPy 2018

29,591 views * Jul 13,2018 il 762 & 4 . SHARE

#2  Enthought
”’

41K subscribers

This talk will present a new approach to dimension reduction called UMAP. UMAP is grounded in
manifold learning and topology, making an effort to preserve the topological structure of the data.
The resulting algorithm can provide both 2D visualisations of data of comparable quality to t-SNE,

SHOW MORE

StatQuest: t-SNE, Clearly Explained
17,938 views

h StatQuest with Josh Starmer
w Published on Sep 18, 2017

t-SNE is a popular method for making an easy to read graph from a complex dataset, but not many
people know how it works. Here's the dope! Also, if you'd like to see a code example in R, here's
one:

SHOW MORE




The goal of t-SNE and UMAP is to reduce dimensions while
preserving specific information about each cell’s neighbors

Higher dimensional

space 2 W _ °
‘e® L

Low dimensional
embedding




t-SNE and UMAP start with a low-dimensional
embedding of randomly placed points
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t-SNE weights its neighbors based on distance
fitted to a distributior

e

i
First, measure the \?’7‘ - -

distance between —t=? -

two points...

Then plot that ...lastly, draw a line from the
point to the curve. The length
of that line is the “unscaled
similarity”.

distance on a
normal curve that is

centered on the
point of interest... \

-

Image source: YouTube: StatQuest with Josh Starmer: t-SNE, clearly explained



UMAP weights its neighbors based on topology

_______
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Find the diameter ___ A
of a neighborhood. \
Think of it like a ball.

Find the probability that
a 1-simplex exists between
two points in a neighborhood

\

. .LA<1> S

0-simplex 1-simplex 2-simplex 3-simplex

Image source: https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

Resulting neighbor graph is a

bunch of simplexes glued together
(simplicial complex). Simpler structure
but preserves topological information.

/
&7

Image source: https://en.wikipedia.org/wiki/Simplicial_complex



The weighted neighborhood graphs can be

represented as similarity matrices
=1 o o3 §

eeeeeeeeeeeee
point of interest. \
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A A Like before, we end up ...compared to the original matrix.

with a matrix of

similarity scores, but 0. _VOVe @ v e

this matrix is a mess...

Image source: YouTube: StatQuest with Josh Starmer: t-SNE, clearly explained



Make these similarity matrices as similar to
each other as possible, and then you’re done
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...without it the clusters would all clump up in the middle and be
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Make these similarity matrices as similar to
each other as possible, and then you’re done
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Dimension reduction maps grou
each other
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KNN to determine preservation of lower dimensional

embeddings
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obal KNN comparison between t-SNE,
MAP, and PCA

C

Dataset: Samusik Bone marrow (public)
Num. cells: 100k

X axis is on a log scale
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t-SNE outperforms UMAP in KNN preservation, has
been observed in scRNA seq data

ARTICLE
X axis is on a log scale

The art of using t-SNE for single-cell

. . 1.00-
transcriptomics (2019)
Dmitry Kobak® ™ & Philipp Berens@® "2:3:4*
0.751
2
=
(Also did KNN preservation, K= 10 only) .‘—é method
‘% 0.50- pca
. X c - tsne
To compare UMAP with our t-SNE approach in terms of 8 umap
preservation of global structure, we first ran UMAP on the c

synthetic and on the Tasic et al.> data sets (Supplementary Fig. 2). 0.25-
We used the default UMAP parameters, and also modified the
two key parameters (number of neighbours and tightness of the
embedding) to produce a more t-SNE-like embedding. In both
cases and for both data sets, all three metrics (KNN, KNC, and 0.00-
CPD) were considerably lower than with our t-SNE approach. . ! ;
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Resu
very
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Does dimension reduction maps preserve some regions
oetter than others (should and/or how should we gate the
map?)
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bh-SNlEl Data: Axel Schulz, PhD



People are already gating and clustering dimension
reduction maps. Guidelines are needed!

Michael Wong and Evan Newell: Manually gating a t-SNE map

Wong et al,
Cell 2016
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Color a dimension reduction map by it's own

neighborhood preservation, given k
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dimr[2]]

Local comparison for t-SNE
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dimr[2]]

Local comparison for UMAP
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t-SNE and UMAP are preserving the data
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Part 1 conclusions

* t-SNE outperforms UMAP (though only slightly) in KNN preservation
* Both t-SNE and UMAP outperform PCA in KNN preservation

 KNN preservation performance varies in specific patterns across both
t-SNE and UMAP

* t-SNE and UMAP have better KNN preservation in smaller
islands/corridors in the data. Implications on how to gate the maps
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* Part 3: Preservation of global structure



mr{[2]]

fa “gate” on the map has 30% KNN
oreservation, where are the other cells?
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KNN identity for t-SNE,
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KNN identity for t-SNE, k = 1000, cell 4
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KNN identity for t-SNE, k = 1000, cell 6
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KNN identity for UMAP, k = 1000, cell 1
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KNN identity for UMAP, k = 1000, cell 4
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KNN identity for UMAP, k = 1000, cell 6
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Use my tool knn sleepwalk

see the feature space KNN iy
for your own data .
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Global preservation, measured by pairwise distances

UMAP

t-SNE

Dimensionality reduction for visualizing single-cell data

using UMAP

Etienne Becht!, Leland McInnes?
Lai Guan Ng!, Florent Ginhoux!®
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K-farthest neighbors (KFN) to determine global
preservation of dimension reduction maps «morg_keiown
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Bioconductor package: Sconify

()

Find KFN for Sobnpae

identities from
each cell from

high-dim

embedding embedding
space

(eg tSNE) and high-dim
space

Repeat across a wide range of
values for K
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therefore concerns itself primarily with accurately representing local structure.
While we believe that UMAP can capture more global structure than these other
techniques, it remains true that if global structure is of primary interest then
UMAP may not be the best choice for dimension reduction.

KFN comparison between PCA, t-SNE

on a log scale

1000
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Mcinness et al, Arxiv 2018
(the UMAP paper)

method
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Across 3 datasets, bar plots with error bars
and p values
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Part 3 conclusions

* Nearest neighborhoods computed from high-D space and dimension
reduction space occupy similar regions

* Positioning of the islands relative to each other could be arbitrary

e K-farthest neighborhood (KFN) preservation reveals global structure
preservation: PCA > UMAP > t-SNE



Next steps: initialization matters
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Toward a "safe” manual gating interface for
dimension reduction maps

Identity color (dimr) Identity color (high-d) Identity comparison
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nnvis: an R package to do neighbor-based
oreservation analysis on your dimension reductions

Home / GitHub / tjburns08/nnvis: Make KNN-based identity comparisons between different manifolds (eg. original space vs t-SNE space)

tjburns08/nnvis: Make KNN-based identity comparisons between different
manifolds (eg. original space vs t-SNE space)

This package examines the quality of a low-dimensional embedding by comparing the
membership of each cell's k-nearest neighbors (KNN) in original high dimensional marker
space with this cell's KNN in the low-dimensional space. Comparisons can be visualized with
average fidelity plots for different values of K, or the t-SNE maps themselves can be colored
by their own fidelity. The package also provides wrappers for popular low dimensional

embeddings.
Getting started Browse package contents
README.md A Vignettes

(3 Man pages
> APl and functions

~ Files
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