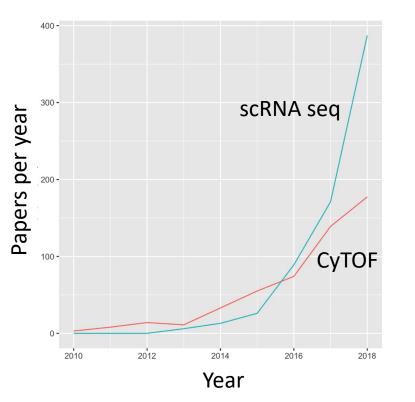
A history of mass cytometry data analysis, and where the field is going

Tyler J Burns, PhD AG Mei, DRFZ

Outline


- Part 1: History of CyTOF analysis
- Part 2: How to develop a robust analytical pipeline

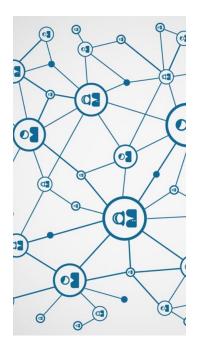
Outline

- Part 1: History of CyTOF analysis
- Part 2: How to develop a robust analytical pipeline

Single cell analysis is complex

There are lots of papers

There are lots of algorithms


Table 1 Overview of the trajectory inference methods included in this study, and several characteristics thereof. This table wi be continuously updated online.

Method	Date	Most complex trajectory type	Fixes topology	Prior required	Prior optional	Evaluated	Reference
Monocle ICA	01/04/2014		Parameter	# branches	None	Yes	[13]
Wanderlust	24/04/2014		Fixed	Start cell(s)	None	Yes	[14]
SCUBA	30/12/2014		Free	None	Time course, Marker genes	Yes	[15]
Sincel	27/01/2015		Free	None	None	Yes	[16]
NBOR	08/06/2015	Linear	TED	TBD	TBD	No ^{at}	[6]
Waterfall	03/09/2015		Fixed	None	None	Yes	[17]
gpseudotime	15/09/2015	Linear	TBD	TBD	TBD	No ^c	[18]
Embeddr	18/09/2015	Linear	Fixed	None	None	Yes	[19]
ECLAIR	12/01/2016	Tree	TED	TRD	TED	No	[20]
DPT	08/02/2016	The second se	Fixed	None	Marker genes	Yes	[20]
Pseudogp	05/04/2016	Linear	Fixed	None	None	Yes	[21]
	09/04/2016	Granh				Yes	
SLICER	19/04/2016		Free TRD	Start cell(s)	End cell(s), Marker genes	Yes No [®]	[23]
		Linear					[24]
Wishbone	02/05/2016		Parameter	Start cell(s), # end states	Marker genes	Yes	[25]
TSCAN	13/05/2016	Tree	Free	None	None	Yes	[26]
SCOUP	08/06/2016	Multifurcation	Parameter	Start cell(s), Cell grouping, # end states	None	Yes	[27]
DeLorean	17/06/2016		TED	TBD	TBD	No ⁸	[28]
StemID	21/06/2016		Free	None	None	Yes	[29]
Ouija	23/06/2016	Linear	Fixed	Marker genes	None	Yes	(30)
Mpath	30/06/2016	Tree	Free	Cell grouping	None	Yes	[31]
celTree	13/08/2016		Free	None	Cell grouping	Yes	[32]
WaveCrest	17/08/2016	Linear	TED	Time course	None	No	[33]
SCIMITAR	04/10/2016	Linear	Fixed	None	None	Yes	[34]
SCORPLUS	07/10/2016	Linear	Fixed	None	None		[34]
SCENT	30/10/2016	Linear	TED	TBD	TBD	Yes No ^d	
							[36]
k-branches	15/12/2016		TED	TBD	TBD	No	[37]
SUCE	19/12/2016	Tree	Free	None	Cell grouping, Marker genes	Yes	[38]
Topslam	13/02/2017		Fixed	Start cell(s)	None	Yes	[39]
Monocle DDRTree	21/02/2017		Free	None	# end states	Yes	[40]
Granatum	22/02/2017		TED	TBD	TBD	No®	[41]
GPfates	03/03/2017		Parameter	# end states	None	Yes	[42]
MFA	15/03/2017		Parameter	# end states	None	Yes	[43]
PHATE	24/03/2017		TED	TBD	TBD	No ^h	[44]
TASIC	04/04/2017	Tree	TBD	TBD	TBD	No ^{ae}	[45]
SDMSC	05/04/2017		TBD	TRO	TBD	No	[46]
Singshot	19/04/2017		Free	None	Start cell(s), End cell(s)	Yes	[47]
scTDA	01/05/2017	Linear	TED	TBD	TBD	No	[48]
UNCURL	31/05/2017	Linear	TED	TRD	TBD	No	[49]
reCAT			Fixed				
FORKS	19/06/2017 20/06/2017	Cycle	TBD	None	None	Yes No ^{fj}	[50]
		1168		Start cell(s)			[51]
MATCHER	24/06/2017		TED	TBD	TBD	No	[52]
PhenoPath	05/07/2017		Fixed	None	None	Yes	[53]
HopLand	12/07/2017		TED	TBD	TBD	No ^{aj}	[54]
SoptSC	26/07/2017		TBD	Start cell(s)	None	No ^{aj}	[55]
PBA	30/07/2017		TBD	TBD	TBD	No	[56]
BGP	01/08/2017		TBD	TBD	TBD	No	[57]
scanpy	09/08/2017		TED	TBD	TBD	No	[58]
B-RGPs	01/09/2017		TBD	TBD	TBD	No	[59]
WADDINGTON-OT	27/09/2017		TED	TBD	TBD	No ^{bj}	[60]
AGA	27/10/2017	Disconnected graph	TBD	TBD	TBD	No	[61]
GPseudoRank	30/10/2017	Linear	TED	TBD	TBD	No ^{aj}	[62]
p-Creode	15/11/2017	Tree	TED	TED	TBD	No	[63]
KeSc	30/11/2017	Linear	TED	TBD	TBD	No ^{dj}	[64]
GrandPrix	03/12/2017	Multifurcation	TED	Time course	None	No ¹	[65]
		Multirurcation					
Topographer	21/01/2018	Tree	TED	None	Start cell(s)	No	[66]
CALISTA	31/01/2018	Graph	TED	None	None	No	[67]
scEpath	05/02/2018		TED	TBD	TBD	No ^{aj}	[68]
MERLOT	08/02/2018		TBD	TBD	TBD	No	[69]
ElPiGraph.R	04/03/2018		TED	TBD	TBD	No	

There are lots of data types

Data types	Method name	Feature throughput	Cell throughput	Refs
Unimodal				
mRNA	Drop-seq	Whole transcriptome	1,000-10,000	
	InDrop	Whole transcriptome	1,000-10,000	1
	10X Genomics	Whole transcriptome	1,000-10,000	
	Smart-seq2	Whole transcriptome	100-300	31
	MARS-seq	Whole transcriptome	100-300	1
	CEL-seq	Whole transcriptome	100-300	
	SPLiT-seq	Whole transcriptome	≥ 50,000	
	sci-RNA-seq	Whole transcriptome	≥ 50,000	
Genome sequence	SNS	Whole genome	10-100	
	SCI-seq	Whole genome	10,000-20,000	1
Chromatin accessibility	scATAC-seq	Whole genome	1,000-2,000	1
	sciATAC-seq	Whole genome	10,000-20,000	1
	scTHS-seq	Whole genome	10,000-20,000	1
DNA methylation	scBS-seq	Whole genome	5-20	1
	snmC-seq	Whole genome	1,000-5,000	10
	sci-MET	Whole genome	1,000-5,000	1
	scRRBS	Reduced representation genome	1-10	11
Histone modifications	scChIP-seq	Whole genome + single modification	1,000-10,000	2
Chromosome conformation	scHi-C-seq	Whole genome	1-10	20
Multimodal				
Histone modifications+spatial	NA	Single locus+single modification	10-100	2
mRNA+lineage	scGESTALT	Whole transcriptome	1,000-10,000	K
	ScarTrace	Whole transcriptome	1,000-10,000	X
	LINNAEUS	Whole transcriptome	1,000-10,000	3
Lineage + spatial	MEMOIR	NA	10-100	z
mRNA + spatial	osmFISH	10-50 RNAs	1,000-5,000	k
	STARmap	20-1,000 RNAs	100-30,000	x
	MERFISH	100-1,000 RNAs	100-40,000	LO
	seqFish	125-250 RNAs	100-20,000	29
mRNA+cell surface protein	CITE-seq	Whole transcriptome + proteins	1,000-10,000	21
	REAP-seq	Whole transcriptome + proteins	1,000-10,000	z
mRNA+chromatin accessibility	sci-CAR	Whole transcriptome + whole genome	1,000-20,000	4
mRNA + DNA methylation	scM&T-seq	Whole genome	50-100	4
mRNA + genomic DNA	G&T-seq	Whole genome + whole transcriptome	50-200	*
mRNA + intracellular protein	NA	96 mRNAs + 38 proteins	50-100	51
		82 mRNAs + 75 proteins	50-200	4
DNA methylation + chromatin accessibility	scNOMe-seq	Whole genome	10-20	1
CEL-seg, cell expression by linear amplification and	sequencino: CITE-seq. ce	llular indexing of transcriptomes and epitopes by	sequencing: G&T-seq. geno	me

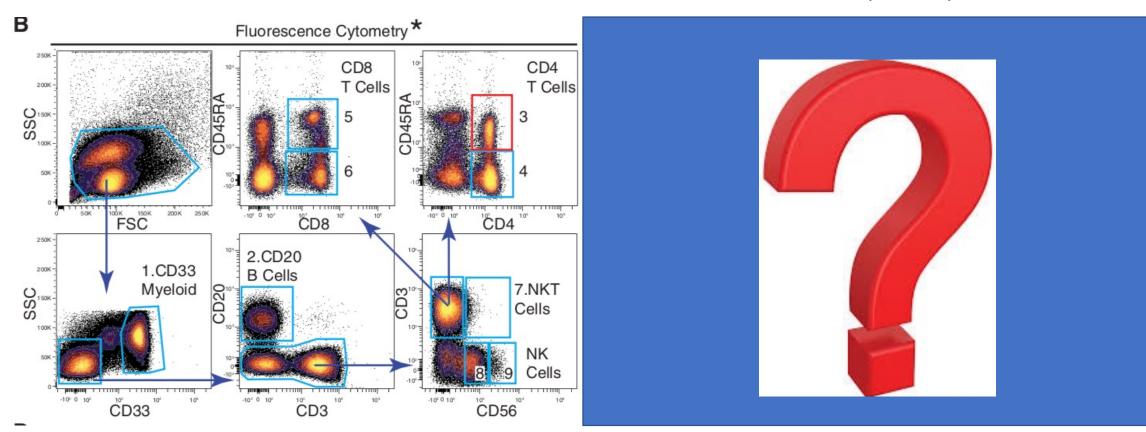
There are social complexities

Burns, 2018

Salens, 2018

Stuart, Satija, 2018

The debut of mass cytometry


Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum

Science

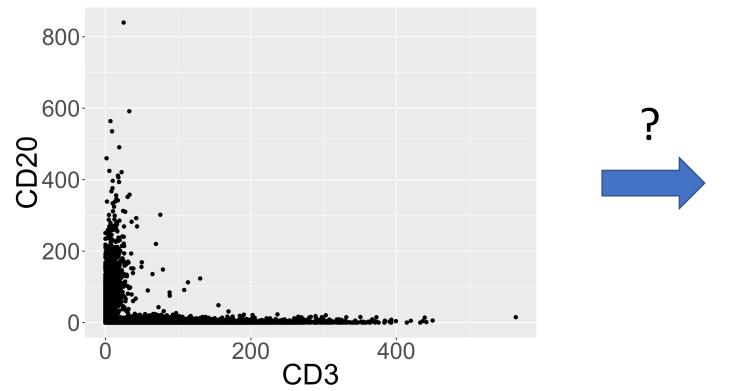
AAAS

Sean C. Bendall,¹* Erin F. Simonds,¹* Peng Qiu,² El-ad D. Amir,³ Peter O. Krutzik,¹ Rachel Finck,¹ Robert V. Bruggner,^{1,7} Rachel Melamed,³ Angelica Trejo,¹ Olga I. Ornatsky,^{4,5} Robert S. Balderas,⁶ Sylvia K. Plevritis,² Karen Sachs,¹ Dana Pe'er,³ Scott D. Tanner,^{4,5} Garry P. Nolan¹†

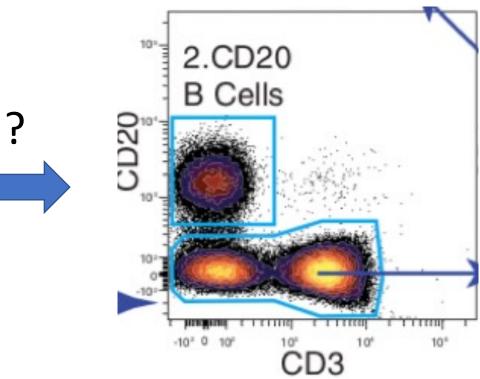
CyTOF pre-processing: make it as similar to flow cytometry as possible

mass cytometry

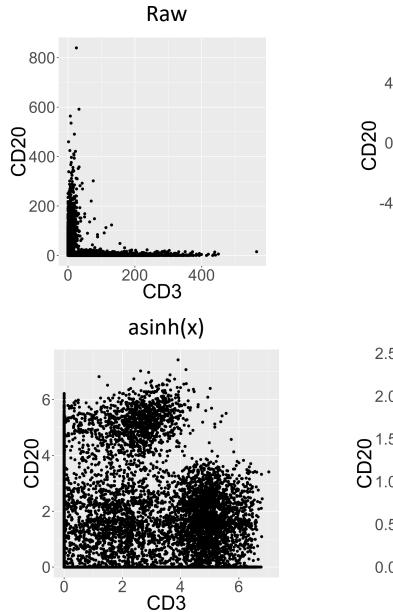
What we see as computational biologists

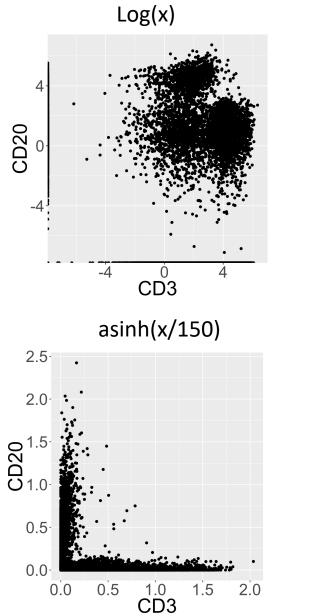

Data structure: tibble

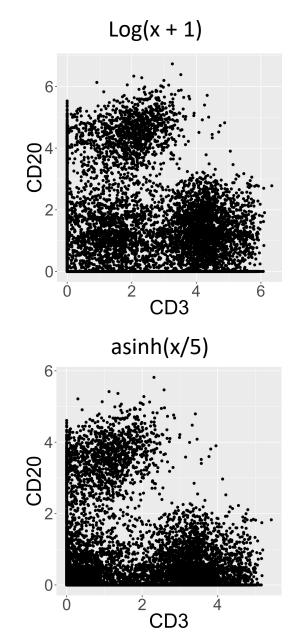
Package: tibble (found in the larger package "tidyverse" by Hadley Wickham)

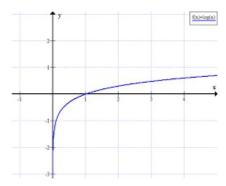

ff <- flowCore::read.FCS(list.files(pattern = "fcs"))
cells <- exprs(ff) %>% as_tibble()
colnames(cells) <- ff@parameters@data\$desc</pre>

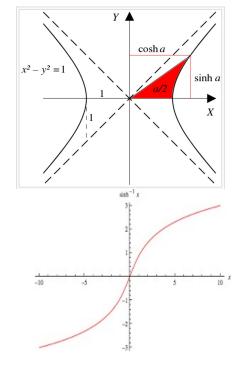
7	# A	tibble: 19,0	696 x 62) -									
		CD25_1 (v)`	CD25_2	Ba138Di	`CD45 (v)`	Cs133Di	`CD28 (v)`	`CD23_aAPC (v)`	CrTH2 (v)	CCR10 (v)`			
		<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>			
	1	2.64	0.935	4.22	134.	0	114.	23.4	1.67	1.15			
	2	2.01	0	24.5	64.0	0	9.84	1.94	0	0			
	3	106.	36.3	2.28	84.3	0	69.3	0	0	0			
	4	0	3.62	5.62	78.0	0	0.901	0.691	0	0			
	5	0.934	0	39.5	51.0	0	0	0	2.81	2.12			
	6	7.45	2.20	17.7	43.0	0	96.7	0	0	0			
	7	0	2.48	9.72	12.6	0	12.3	2.12	41.2	0			
	8	9.40	16.5	16.3	87.1	0	75.7	0.011 <u>4</u>	0	0			
	9	45.1	33.6	4.33	107.	0	0	8.45	0	0			
1	10	2.86	2.36	21.9	41.3	0	2.98	1.44	0	0			
7	¥	with 19,686	more ro	ows, and	53 more var	'iables:	`CD36 (v)`	<dbl>, `CD38 (v)</dbl>	` <i><dbl></dbl></i> , `CD7	3			
7	4	(v)` <i><dbl></dbl></i> ,	`iNKT_d	ıCy5 (v)`	<i><dbl></dbl></i> , `TC	Rgd (v)`	ˈ <i><dbl></dbl></i> , `Ig	JE (v)` <i><dbl></dbl></i> , Ev	ent_length <i><d< i=""></d<></i>	<i>bl></i> , `CD27			
7	#	(v)` <i><dbl></dbl></i> ,	CXCR3	(v)` <i><db< i=""></db<></i>	l>, `CD16 ((v)` <dbl< th=""><th>l>, `CCR4 (∨</th><th>')` <i><dbl></dbl></i>, `CD14</th><th>(v)` <i><dbl></dbl></i>, `</th><th>CD127</th></dbl<>	l>, `CCR4 (∨	')` <i><dbl></dbl></i> , `CD14	(v)` <i><dbl></dbl></i> , `	CD127			
7	¥	(v)` <i><dbl></dbl></i> ,	`CD20 ((v)` <dbl< th=""><th>>, `CD3 (v)</th><th>)` <i><dbl></dbl></i>,</th><th>, DNA1 <i><dbl></dbl></i></th><th>⊳, DNA2 <i><dbl></dbl></i>, `C</th><th>D57 (v)` <i><dbl.< i=""></dbl.<></i></th><th>>,</th></dbl<>	>, `CD3 (v))` <i><dbl></dbl></i> ,	, DNA1 <i><dbl></dbl></i>	⊳, DNA2 <i><dbl></dbl></i> , `C	D57 (v)` <i><dbl.< i=""></dbl.<></i>	>,			
7	# `CD21_aFITC (v)` <dbl>, `CD19 (v)` <dbl>, `CD123 (v)` <dbl>, `CD4 (v)` <dbl>, `CD11c (v)` <dbl>,</dbl></dbl></dbl></dbl></dbl>												
7	# `CD7 (v)` <i><dbl></dbl></i> , `IgA (v)` <i><dbl></dbl></i> , `TCRa72 (v)` <i><dbl></dbl></i> , Pd102Di <i><dbl></dbl></i> , BC1 <i><dbl></dbl></i> , Pd105Di <i><dbl></dbl></i> ,												
7	#	BC2 <i><db1></db1></i> ,	BC3 <i><db< i="">1</db<></i>	!>, BC4 <	<i>dbl></i> , `CCR6	5 (v)` <0	<i>dbl></i> , Pt194D)i <i><dbl></dbl></i> , `CD5 (v	/)` <i><dbl></dbl></i> , `CD	8			
7	¥	(v)` <i><dbl></dbl></i> ,	BC5 <db< th=""><th><i>⊳l></i>, LD <</th><th><i>dbl></i>, `IgD</th><th>(v)` <db< th=""><th><i>pl></i>, `CD39 (</th><th>(v)` <i><dbl></dbl></i>, `CD95</th><th>(v)` <i><dbl></dbl></i>,</th><th>`CD1c</th></db<></th></db<>	<i>⊳l></i> , LD <	<i>dbl></i> , `IgD	(v)` <db< th=""><th><i>pl></i>, `CD39 (</th><th>(v)` <i><dbl></dbl></i>, `CD95</th><th>(v)` <i><dbl></dbl></i>,</th><th>`CD1c</th></db<>	<i>pl></i> , `CD39 ((v)` <i><dbl></dbl></i> , `CD95	(v)` <i><dbl></dbl></i> ,	`CD1c			
	4	()	CCD7 /	· · · · ·	CD24 (1.	V-121D-	JL1. CD1C1 ()	T-M	()			

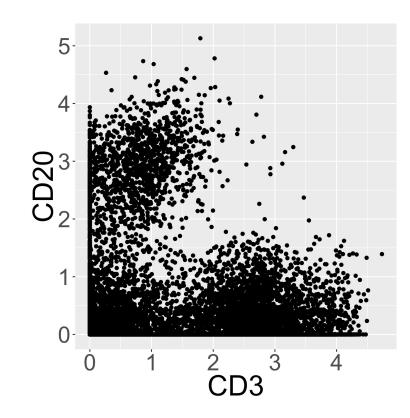

What we see as computational biologists: the raw data



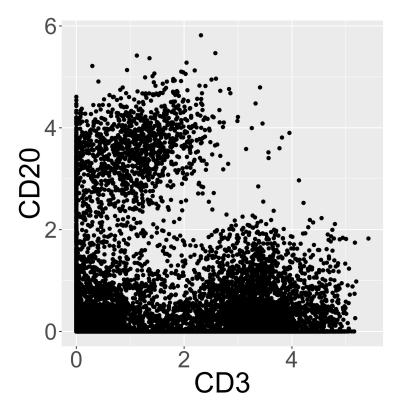

ggplot2::qplot()



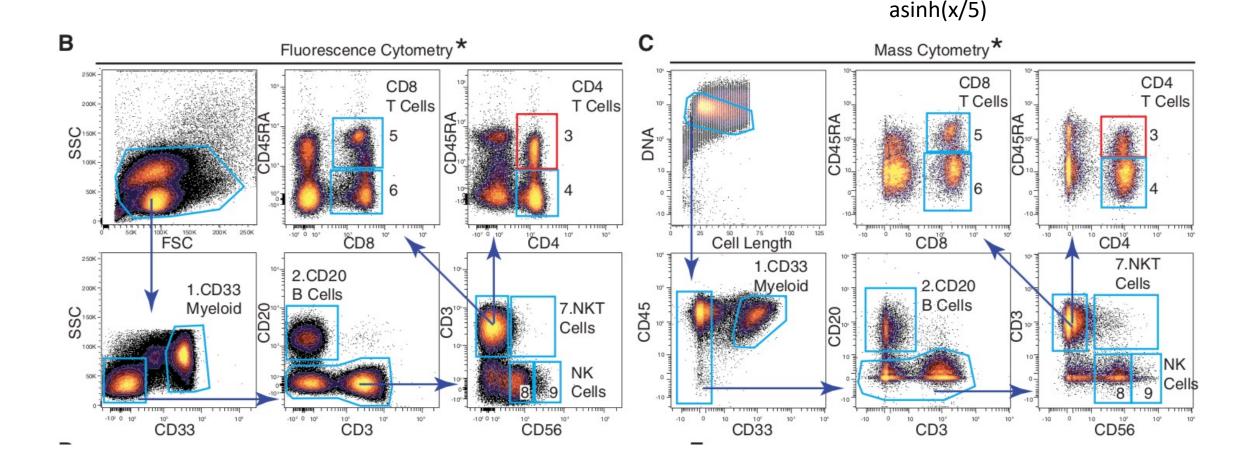

Testing log normality of the data



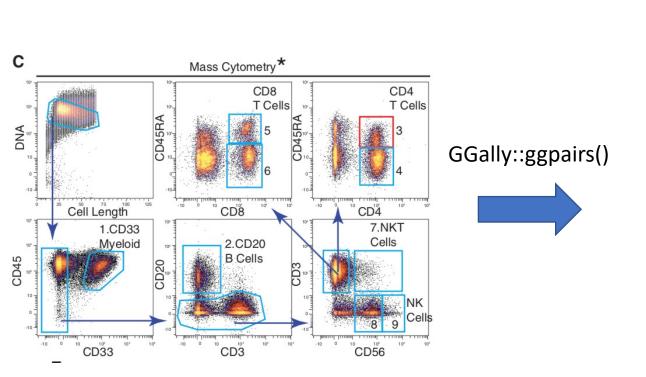
Similar scale arguments can be worked into the logarithmic functions


r r

Try evaluating multi-modality rigorously (eg. Hartigan's dip test)



log(x/5 + 1)


asinh(x/5)

CyTOF pre-processing: make it as similar to flow cytometry as possible

Exhaustive manual gating for mass cytometry, for novel subset discovery

30 markers = 435 biaxial plots

0.6 0.4 0.2	25 1	Corr:	Corr:	Corr;	Corr:	Corr;	Corr:	Corr	D27 (Corr: 0.324	Corr:-	Con:	Corr	Corr;	Corr:	Corr:-	Corr:	Corr:	Corr:	Corr:-	Corr:	Corr:	Corr	Corri	Corre	Corr:	Corr:	Corra	Corr:-		D56 (Corr: C
0.0550	1	K	Corr:	Corr:		Corr:	Corr:	Corr:	Corr: 0.322	Corr: -0.18	Corr: 0.259	Corr:	Corr:).0185	Corr:	Corr:	Corr:	Corr:	Corr:).0397	Corr:	Corr: 0.274	Corr:	Corr:	Corr	Corr: 0.242	Corr:	Corr:	Corr:	Corr:	Corr:).0455	Corr: D25
494	*		Λ	Corr:		Corr:	Corr:	Corr: 0.093	Corr: 0.256	Corr: 0.106	Corr: 0.252	Corr:	Corr: 0.121	Corr:		Corr:	Corr: 0.237	Corr:	Corr:	Corr:	Corr: 0.241	Corr:	Corr:		Corr:	Corr:	Corr:	Corr:	Corr:	Corr: 45
- 642	1		ä	M	Corr:		Corr:	Corr.	Corr: 0.609			Corr:		Corr:		Corr:	Corr: -0.17				Corr: 0.294	Corr:	Corr:			Corr: -0.159	Corr:	Corr:		Corr: 028
3			4	1	K	Corr:	Corr: 0.043	Corr:	Corr: 0.221	Corr:	Corr: 0.471	Corr:	Corr: 0.376	Corr:	Corr:	Corr:	Corr:	Corr: 0.086;	Corr:	Corr:	Corr: 0.275	Corr:	Corr	Corr: 0.347	Corr:	Corr: 0.032	Corr:	Corr:	Corr:	Corr: aA
0 6		Ŀ	Ē	E	Ľ.	٨	Corr:	Corr:	Corr: 0.512	Corr:	Corr:	Corr:	Corr:		Corr:	Corr:	Corr:	Corr:	Corr:		Corr: 0.563	Corr:	Corr:		Corr:	Corr:).0148	Corr		Corr:	Corr: 036
0642	R	Ľ.	-				M	Corr:	Corr: -0.359	Corr	Cont:	Corr:	Corr: 0.184	Corr:		Corr:	Corr:	Corr:	Corr:	Corr:	Corr: -0.266	Corr:	Corr:	Corr:	Corr:	Corr:	Corri	Corr:	Corr:	Corr: 03
0 4		is.	<u>.</u>				*	0.002	Corr:	Corr. 0.066		Corr:	Corr: 0.459	Corr:	Corr: 0:054						Corr: 0.122		Corr			Corr: 0.19		Corr.	Corr:	Corr: 073
OUTION		<u>-</u>	3		ř.				٨	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr: 027
0 642	Ł	E	Ī	E			Į.	Ł	Ľ	N.	Corr: 0.206	Corr:	Corr:		Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr: 0.336	Corr:	Corr:	Corr: -0.16	Corr:	Corr:	Corr: 0.049	Corr: 0.19	Corr: 0.217	Corr: 0
0 642	R	E	3	E	K.	3		Ľ	Ŀ	Ľ		Corr:	Corr: 0.241	Corr:	Corr: 0.102	Corr: -0.198	Corr: -0.271	Corr: 0.023	Corr: 1.0335	Corr: 0.779	Corr: -0.54	Corr: 0.424	Corr.	Corr: 0.729	Corr: 0.389	Corr: 0.087	Corr: 0.236	Corr: 0.332	Corr:	Corr: 4
D642	8		ī			E				Ŀ		Λ	Corr:		Corr:	Corr:	Corr:	Corr:	Corr:		Corr:	Corr:	Corr	Corr:	Corr:	Corr:		Corr	Corr	Corr: 127
0 4 2		-					_						0.000	Corr:	Corr: 0.031	Corr:	Corri	Corr: 0.044	Corr:	Corr:	Corr: -0.232	Corr:	Corr	Corr:	Corre	Corr: 0.285	Corri	Corr:		Corr: 20
OUTON		-	Ī	-	-	E	-	Ā.		Ŀ	_		-	6			Corr:	Corr: 0.222	Corr: 0.258	Corr: 0.599	Corr:	Corr:	Corr:	Corr: 0.598	Corr:	Corr:	Corr: 0.064	Corr: 0.167	Corr:).0565	Corr: 03
0 642			3	R			Å.	K.					-	_	h	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr	Corr:	Corr:	Corr:		Corr:	Corr:	Corr. 5
Orador		۴£	ā					*		~ *		-		È.			Corr:	Corr:).0545	Corr:	Corr:	Corr: 0.243	Corr:	Corr: 0.109	Corr:	Corr:	Corr:	Corr: 0.563	Corr:	Corr: 0.454	Corr: a
0642	1	_	ī			È.	2	Ē													(accienciation)		100100	(m) (m) (m) (m)	1.000.000.000.000.000		~~~~~	(c.) = (m)m	*****	Corr: 9
0 4	K								Ĩ.									10004	Corr:	Corr:	Corr: 0.222	Corr:	Corr: 0.14F	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr: 123
0494			3		-	-	-	Ľ	-	9	-		_	ĸ	_	-	_						Corr				Corr: -0.231			Corr: 04
DIMON	Ē	Ē	ī		K.	3	-						-	Ŀ	_	L			-		100 million	-		100-1-1-1-1	100-1-1-1-1				-	Corr: 11 0.1450
4			Ī			Ŀ		k		12					= .	R.	_		_		M	Corr:	Corr. 0.394	Corre	Corre	Corr: -0.182	Corra	Corr: 0.34	Corr: 0.23	Corr: 07
494			Ā									-	_			_	Ī.					\mathbb{N}	Corr	Corr: 0.489	Corr:	Corr: 0.178	Corr:	Corr:	Corr:	Corr: 05
0640			Ā					ĸ	Ē	E d				Æ		_	_		_	_		ß	n	Corr.	Corr:	Corr:	Corr:	Corr:	Corr:	Corr: 0
494	1		潘						Ň		ĥ	_	_		_		_		_		_	ĺk		h	Corr:	Corr:				Corr: 039
DUNDAN			đ		Ā	-		b .				_		-		Ŀ			-		2.0		3		Μ	Corr: -0.14	Corr:	Corr: 0.173		Corr: 0.224
DIMON	Ľ.	Ċ.	Ā		<u>.</u>		1.24		Ň.	<u>k</u>	ż.	_								i.e	<u>.</u>	i.	ž.		ż.		Corr: 0.326	Corr:	Corr:	Corr: 0
04944	1								e.															Ř.	Ë	K.	l	Corr. 0.111	Corr:	Corr. 024
0 32	*																									Ē.		(experience)	~~~~~	Corr: 16 0.274
0494	×	K	4					-																	-	Ē	1	k	L	Corr: 5R
0 640	÷.	.	1		1	K	5	K.	Ŀ.	影	-	<u> </u>		ka		Ē	•		Ŀ.		2					<u>.</u>	Ľ.	Ľ.	K	56
0	024			0246	0123	0246	0246	01234													024	01234		01234	012345	012345	01234	0123	01234	0246


Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE VOLUME 29 NUMBER 10 OCTOBER 2011 NATURE BIOTECHNOLOGY

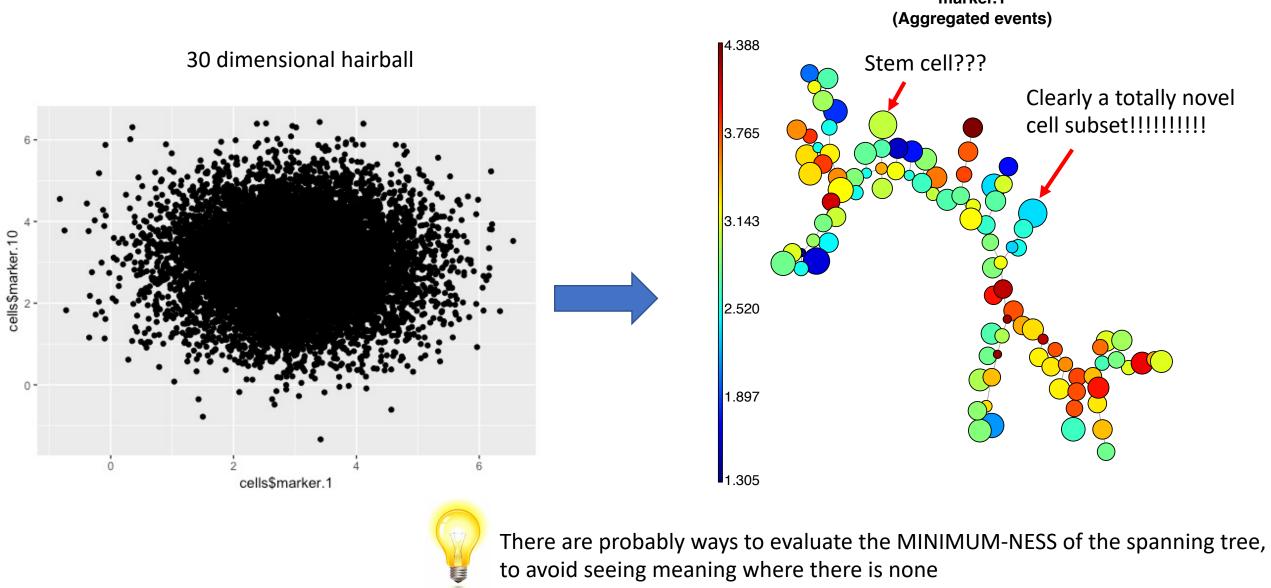
Peng Qiu^{1,2}, Erin F Simonds³, Sean C Bendall³, Kenneth D Gibbs Jr³, Robert V Bruggner³, Michael D Linderman⁴, Karen Sachs³, Garry P Nolan³ & Sylvia K Plevritis¹

BUT WHERE ARE THE P VALUES???

How does SPADE work?

Minimum spanning tree:

All vertices are connected without any cycles, and with the minimum possible edge weight (distance).


Additional complexity:

SPADE uses the L1 distance for all steps, whereas most other CyTOF tools I've seen use the L2 (Euclidean) distance.

What happens when you run SPADE on random data?

6	library(tidyverse)	# A	tibble: 1	10,000 x 30	0								
7		n	narker.1 n	marker.2 ma	arker.3 n	narker.4 m	marker.5	marker.6 m	arker.7 n	narker.8 m	narker.9 ma	arker.10 m	arker.11
· _	# pipalina		<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0 🔻	# pipeline	1	3.75	2.37	2.74	2.03	3.34	3.10	3.14	1.93	2.90	2.68	1.77
9		2	0.602	4.26	2.96	2.82	0.883	3.48	2.22	2.08	1.39	1.95	3.00
10 -	<pre>cells <- lapply(seq(30), function(i) {</pre>	3	2.41	2.71	3.60	4.74	2.64	4.30	1.75	3.57	3.15	5.39	3.01
11	curr < -rnorm(10000, mean = 3, sd = 1)	4	3.39	4.24	3.36	5.42	5.03	1.05	4.26	3.94	3.84	2.19	3.00
		5	2.76	3.43	2.48	4.83	1.55	1.00	3.93	4.63	4.22	3.60	2.82
12	return(curr)	6	2.78	2.34	3.03	2.06	1.97	4.06	4.56	2.67	4.56	3.10	4.01
13	}) %>%	7	2.59	4.23	3.99	2.45	3.48	4.08	2.38	3.45	3.44	3.66	4.23
14	do.call(cbind, .) %>%	8	2.90	2.15	4.06	2.02	1.85	2.48	4.81	2.53	1.42	2.51	1.19
15	as_tibble()	9	1.98	3.16	3.19	3.65	4.27	3.91	2.61	3.32	2.43	3.20	2.17
	ds_ctbbte()	10	3.50	3.89	4.19	2.84	2.13	2.75	4.14	5.45	4.78	4.47	4.35
16		#	with 9,99	90 more row	vs, and 1	19 more vo	ariables:	marker.12	<i><dbl></dbl></i> , n	narker.13	<dbl>, mar</dbl>	rker.14 <i><d< i=""></d<></i>	bl>,
17	<pre>names(cells) <- paste("marker", seq(30), sep = ".")</pre>	#	marker.15	5 <i><dbl></dbl></i> , ma	arker.16	<i><dbl></dbl></i> , mo	arker.17	<dbl>, mar</dbl>	ker.18 <a< td=""><td><i>dbl></i>, mark</td><td>ker.19 <i><dbi< i=""></dbi<></i></td><td><i>l></i>,</td><td></td></a<>	<i>dbl></i> , mark	ker.19 <i><dbi< i=""></dbi<></i>	<i>l></i> ,	
18		#	marker.20	0 <i><dbl></dbl></i> , mo	arker.21	<i><db1></db1></i> , mo	arker.22	<dbl>, mar</dbl>	ker.23 <a< td=""><td><i>dbl></i>, mark</td><td>ker.24 <i><dbi< i=""></dbi<></i></td><td>l>,</td><td></td></a<>	<i>dbl></i> , mark	ker.24 <i><dbi< i=""></dbi<></i>	l>,	
	write env(calle "heave call data cov")	#	marker.25	5 <i><dbl></dbl></i> , ma	arker.26	<i><dbl></dbl></i> , mo	arker.27	<dbl>, mar</dbl>	ker.28 <a< td=""><td><i>dbl></i>, mark</td><td>ker.29 <i><dbi< i=""></dbi<></i></td><td><i>l></i>,</td><td></td></a<>	<i>dbl></i> , mark	ker.29 <i><dbi< i=""></dbi<></i>	<i>l></i> ,	
19	<pre>write.csv(cells, "bogus_cell_data.csv")</pre>	#	marker.30	0 <dbl></dbl>									

What happens when you run SPADE on random data?

And thus began the clustering holy wars...

Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE

Peng Qiu^{1,2}, Erin F Simonds³, Sean C Bendall³, Kenneth D Gibbs Jr³, Robert V Bruggner³, Michael D Linderman⁴, Karen Sachs³, Garry P Nolan³ & Sylvia K Plevritis¹

Published in final edited form as: Nat Methods. 2016 June ; 13(6): 493–496. doi:10.1038/nmeth.3863

Automated Mapping of Phenotype Space with Single-Cell Data

Nikolay Samusik¹, Zinaida Good^{1,2}, Matthew H. Spitzer^{1,2}, Kara L. Davis^{1,3}, and Garry P. Nolan^{1,*} ¹Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford,

California, USA

²Department of Pathology, Stanford University School of Medicine, Stanford, California, USA ³Department of Pediatric Hematology and Oncology, Stanford University School of Medicine, Stanford, California, USA

Methodology article Open Access

Data reduction for spectral clustering to analyze high throughput flow cytometry data

Habil Zare, Parisa Shooshtari, Arvind Gupta and Ryan R Brinkman *BMC Bioinformatics* 2010 11:403 <u>https://doi.org/10.1186/1471-2105-11-403</u> © Zare et al; licensee BioMed Central Ltd. 2010 **Received:** 21 December 2009 Accepted: 28 July 2010 Published: 28 July 2010

Cell

Mass cytomet

Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis

Graphical Abstract

Authors

Jacob H. Levine, Erin F. Simonds, Sean C. Bendall, ..., James R. Downing, Dana Pe'er, Garry P. Nolan

SAC

Original Article 🔂 Free Access

Cytometry

*immuno*Clust—An automated analysis pipeline for the identification of immunophenotypic signatures in highdimensional cytometric datasets

ournal of Quantitativ

Till Sörensen, Sabine Baumgart, Pawel Durek, Andreas Grützkau, Thomas Häupl 💌

Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE)

Karthik Shekhar, Petter Brodin, Mark M. Davis, and Arup K. Chakraborty PNAS January 7, 2014 111 (1) 202-207; published ahead of print December 16, 2013 https://doi.org/10.1073/pnas.1321405111

Contributed by Mark M. Davis, November 19, 2013 (sent for review October 5, 2013)

Cytometry Journal of Quantitative Cell Science

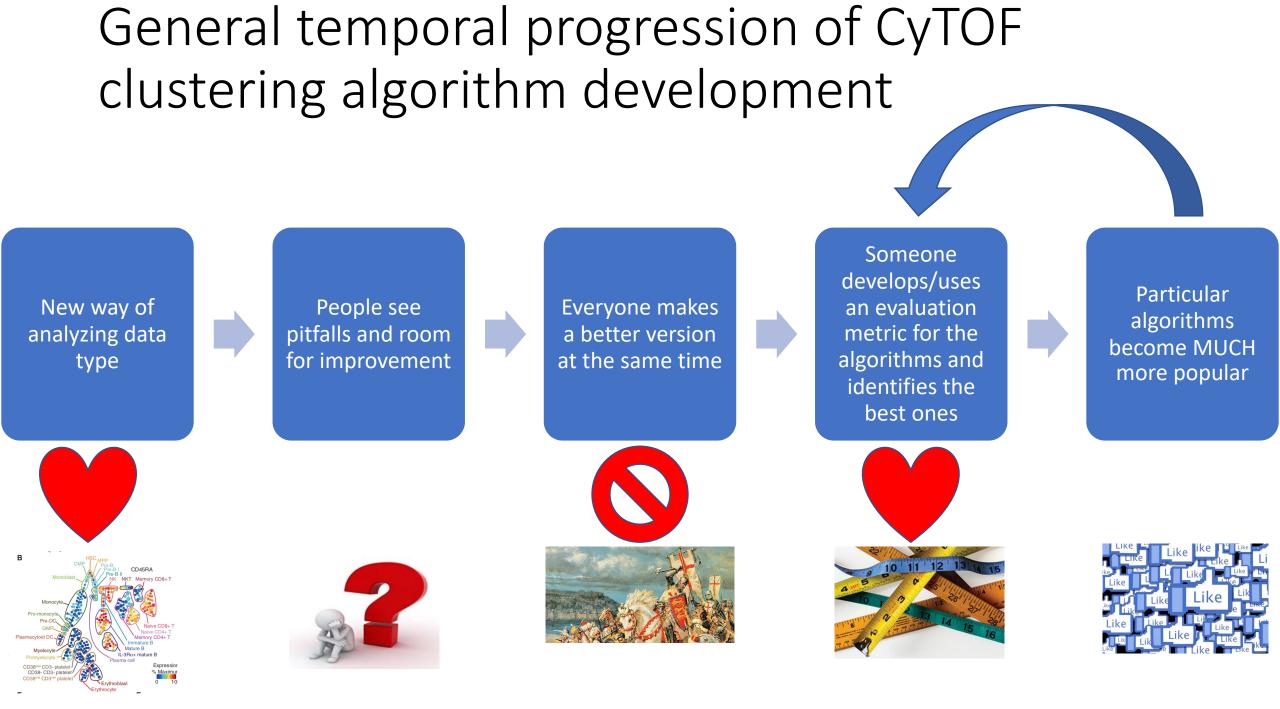
Original Article 🔂 Free Access

FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data

Sofie Van Gassen 🗙, Britt Callebaut, Mary J. Van Helden, Bart N. Lambrecht, Piet Demeester, Tom Dhaene, Yvan Saeys

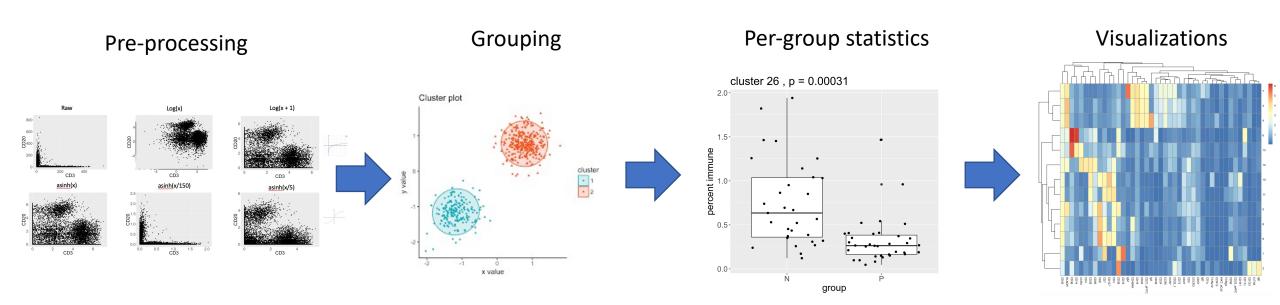
How should we evaluate these clustering tools? asked Lukas Weber and Mark Robinson.

Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data


Lukas M. Weber^{1,2}, Mark D. Robinson^{1,2,*} (Our heroes in the story)

¹ Institute of Molecular Life Sciences, University of Zurich, Switzerland
 ² SIB Swiss Institute of Bioinformatics, University of Zurich, Switzerland

Turn this into a brute-force program for single cell data


Lessons learned

- If something is radically new, it doesn't have to be PERFECT to make it into Cell/Science/Nature. It's a prototype.
- Every bioinformatic tool has its assumptions and limitations. Break it. Benchmark it.
- Evaluation metrics of unsupervised learning algorithms and dataset reanalysis is underexplored.
- Think of a CyTOF pipeline as an interaction between the cell expression matrix, cell cluster frequency table, and a gating/visualization tool

Outline

- Part 1: History of CyTOF analysis
- Part 2: How to develop a robust analytical pipeline

CyTOF analysis: general principles relevant to the DRFZ

First, process the data

Make the flow set

fs <- FlowsetWrapper(total_files, subsample = sub_sample)</pre>

Read in every fcs file Asinh transfer of markers within fcs file Subsample each fcs file to user-defined number of cells

ubsampling flow s

A flowSet with 20 experiments.

column names:

89Y_CD15 102Pd 103Rh_live-dead 104Pd_barcode 105Pd_barcode 106Pd_barcode 108Pd_barcode 110Pd_barcode 113In_ CD66b 115In_Siglec8 127I 130Ba 140Ce_CD14 142Nd_cleaved_caspase_3 143Nd_CD19 144Nd_pPLCg2 145Nd_CD4 146Nd_CD4 5R0 147Sm_CD20 148Nd_IgA 149Sm_Syk 150Nd_pSTAT5 151Eu_CD123 152Sm_CD45RA 153Eu_pSTAT1 154Sm_CD1c 155Gd_CD27 1 56Gd_p38 158Gd_pSTAT3 159Tb_pMAPKAPK2 160Gd_CD11c 161Dy_CD7 162Dy_IgM 163Dy_CCR7 164Dy_IkBa 165Ho_pCREB 166Er _pNFkBp65 167Er_CD38 168Er_CD16 169Tm_CD25 170Er_Siglec1 171Yb_ZAP70_Syk 172Yb_pS6 173Yb_IgD 174Yb_HLA-DR 175 Lu_CXCR3 176Yb_CD56 190BCKG 191Ir_DNA 193Ir_DNA 194Pt_barcode 195Pt_CD3 196Pt_CD8 198Pt_CD45 208Pb 209Bi_CD11

Output: A flow set Package: FlowCore

... containing our expression matrices

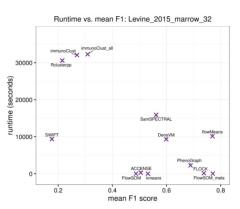
	xprs(fs[[1]]) %>% as	.tibble()									
	tibble: 10	0,000 x 5	56									
	`89Y_CD15`	`102Pd` `	103Rh_live-dea…	`104Pd_barcode`	`105Pd_barcode`	`106Pd_barcode`	`108Pd_barcode`					
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>					
	0.435	418.	0.790	341.	409.	58.6	38.5					
2	0	239.	0.769	259.	294.	44.5	22.4					
	0.020 <u>9</u>	260.	0	222.	258.	33.3	12.9					
4	0.573	326.	0	257.	243.	41.1	23.2					
	2.26	239.	0	201.	228.	32.9	24.1					
	1.34	415.	0	310.	356.	32.0	28.2					
	0.703	323.	3.40	268.	218.	25.6	27.0					
8	0.313	324.	1.14	290.	378.	21.3	24.0					
	0.490	256.	1.49	226.	225.	16.6	25.0					
10	0	164.	0	169.	152.	15.9	6.46					
	with 99,99	0 more ro	ows, and 49 more	variables: `110F	d_barcode` <i><dbl></dbl></i>	•, `113In_CD66b`	<dbl>,</dbl>					
	`115In_Sig	lec8` <i><d< i="">Ł</d<></i>	⊳l>, `127I` <i><dbl></dbl></i>	, `130Ba` <i><dbl></dbl></i> ,	`140Ce_CD14` <i><c< i=""></c<></i>	1bl>,						
	# `142Nd_cleaved_caspase_3` <i><dbl></dbl></i> , `143Nd_CD19` <i><dbl></dbl></i> , `144Nd_pPLCg2` <i><dbl></dbl></i> , `145Nd_CD4` <i><dbl></dbl></i> ,											
	`146Nd_CD4	5R0` <i><dbl< i=""></dbl<></i>	<pre>!>, `147Sm_CD20`</pre>	<dbl>, `148Nd_Ig</dbl>	JA` <i><dbl></dbl></i> , `149Sm	ı_Syk` <i><dbl></dbl></i> ,						
	`150Nd_pST	AT5` <dbl< th=""><th><pre>!>, `151Eu_CD123`</pre></th><th><dbl>, `152Sm_(</dbl></th><th>CD45RA` <i><dbl></dbl></i>, `1</th><th>.53Eu_pSTAT1` <i><db< i=""></db<></i></th><th>1>,</th></dbl<>	<pre>!>, `151Eu_CD123`</pre>	<dbl>, `152Sm_(</dbl>	CD45RA` <i><dbl></dbl></i> , `1	.53Eu_pSTAT1` <i><db< i=""></db<></i>	1>,					

1545m_CUIC <abl>, 155Gd_CU27 <abl>, 156Gd_F58 <abl>, 158Gd_F58 <abl>, 158Gd_F58 <abl>, 158Gd_F58 <abl>, 162Dy_IgM` <abl>, 161Dy_CD7` <abl>, 162Dy_IgM` <abl>, 163Dy_CCR7` <abl>, 166H_pNFkBp65` <abl>, 165Ho_pCREB` <abl>, 166Er_pNFkBp65` <abl>, 166H_pNFkBp65` <abl>, 166Ho_pCREB` <able>, 166H

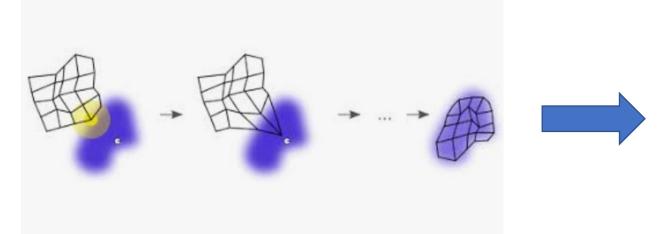
...of flow frames Package: FlowCore

fs[[1]]

flowFrame object 'c01_ExpT29_HC_SLE_pool2_SLE16_SLE.fcs'										
with 1000	000 cells and 56 observab	les:								
	name	desc	range	minRange	maxRange					
\$P3	89Y_CD15	89Y_CD15	8192	0	8191					
\$P4	102Pd	102Pd	4096	0	4095					
\$P5	103Rh_live-dead	103Rh_live-dead	4096	0	4095					
\$P6	104Pd_barcode	104Pd_barcode	4096	0	4095					
\$P7	105Pd_barcode	105Pd_barcode	4096	0	4095					
\$P8	106Pd_barcode	106Pd_barcode	4096	0	4095					
\$P9	108Pd_barcode	108Pd_barcode	4096	0	4095					
\$P10	110Pd_barcode	110Pd_barcode	4096	0	4095					
\$P11	113In_CD66b	113In_CD66b	4096	0	4095					
\$P12	115In_Siglec8	115In_Siglec8	4096	0	4095					


FlowSOM clustering

Original Article 🛛 🔂 Free Access


FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data

Sofie Van Gassen 🔀, Britt Callebaut, Mary J. Van Helden, Bart N. Lambrecht, Piet Demeester, Tom Dhaene, Yvan Saeys

Note: try taking your favorite clustering algorithm and using it at the consensus step (eg. Louvain, Mean-shift).

Self organizing map (similar output to k-means) Package: FlowSOM

Hierarchical clustering of the clusters Package: ConsensusClusterPlus (within FlowSOM)

•

FlowSOM clustering

Newer versions use the FlowSOM package directly

# A	tibble: 2,	000,000	x 60				
8	`89Y_CD15`	`102Pd`	`103Rh_live-dea…	`104Pd_barcode`	`105Pd_barcode`	`106Pd_barcode`	`108Pd_barcode`
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0.435	418.	0.790	341.	409.	58.6	38.5
2	0	239.	0.769	259.	294.	44.5	22.4
3	0.020 <u>9</u>	260.	0	222.	258.	33.3	12.9
4	0.573	326.	0	257.	243.	41.1	23.2
5	2.26	239.	0	201.	228.	32.9	24.1
6	1.34	415.	0	310.	356.	32.0	28.2
7	0.703	323.	3.40	268.	218.	25.6	27.0
8	0.313	324.	1.14	290.	378.	21.3	24.0
9	0.490	256.	1.49	226.	225.	16.6	25.0
10	0	164.	0	169.	152.	15.9	6.46

Cluster only		Make this	s chart in excel
on surface markers	1 2	113In_CD66b	functiona 142Nd_cleaved_caspase 144Nd_pPLCg
	3 4 5 6 7 8 9 10 11 12 13 14 15	154Sm_CD1c 155Gd_CD27 160Gd_CD11c	1495m_Sy 150Nd_pSTA 153Eu_pSTA 156Gd_p3 158Gd_pSTA 159Tb_pMAPKAPH 164Dy_IkH 165Ho_pCRH 166Er_pNFkBp0 171Yb_ZAP70_Sy 172Yb_p9
	16 17		

Τ5

T1 38 T3

Ba EB

Vector of Cluster ID, attached to the end of the tibble

cell:	s\$cī	Lust	ter																													
[1]	4	4	4	4	4	4	4	4	4	9	4	4	8	4	4	4	4	4	3	4	4	4	4	17	4	4	4	4	13	4	23	4
[33]	4	4	4	4	4	4	4	4	4	4	4	4	1	4	4	39	4	4	4	4	4	15	4	1	4	4	4	4	4	22	4	4
[65]	4	4	4	4	4	4	4	4	4	4	4	4	4	4	30	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1
[97]	4	4	4	4	4	4	4	4	4	4	4	4	23	4	4	11	4	4	37	4	4	4	4	4	4	15	4	4	4	4	4	4
[129]	4	15	4	4	4	4	4	4	1	4	4	4	4	4	4	4	4	4	4	2	17	4	4	4	4	4	4	4	2	4	4	4
[161]	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	14	4	4	4	4	4	4	4	13	4	4	4	13	4	4	4
[193]	4	4	4	13	4	7	30	4	4	4	4	4	4	8	4	40	4	4	5	4	40	4	4	4	4	9	4	4	13	4	4	4
[225]	25	4	11	4	4	4	4	4	4	4	30	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	36	4	4	4
[257]	4	4	4	25	4	3	36	4	4	4	4	4	4	15	4	4	4	17	4	4	4	4	36	2	4	4	4	4	4	4	4	4
							4																									

From number of clusters to cell frequency table

Number of cells per cluster, per file File summarized as "Sample ID" for aesthetics

counts SLE1 SLE11 SLE12 SLE13 SLE14 SLE15 SLE2 SLE3 SLE4 SLE5 HC10 HC16 49636 47626 52586 51145 74776 77242 63202 63228 90177 58566 66551 51495 61380 1626 1359

Convert to percentages
counts <- apply(counts, 2, function(j) +
 return(j/sum(j))
}) %>% as.tibble
counts <- counts * 100</pre>

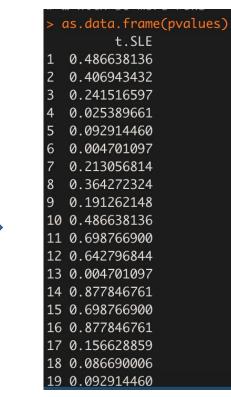
counts SLE1 SLE11 SLF12 SLF13 SLF14 SLF15 SLE2 SLE3 SLE4 SLE5 HC10 HC18 5.980 2.922 2.617 6.485 10.721 5.776 6.014 2.355 2.517 4.244 4.817 1.841 0.559 0.292 0.935 0.627 0.236 0.715 1.022 0.313 0.785 0.446 0.775 0.462 0.705 0.740 0.683 0.368 0.578 0.568 0.413 0.943 2.605 1.137 0.647 0.562 0.572 0.641 0.299 74.776 77.242 63.202 63.228 90.177 58.566 66.551 51.495 61.380 49.636 47.626 52.586 51.14 82.898 0.316 0.390 0.099 0.227 0.287 0.092 0.182 0.285 0.147 0.141 0.172 0.201 0.129 0.097 0.78 0.437 0.133 0 006 0.478 0.173 1.056 0.398 1.076 0.294 0.250 0.053 0.332 0.058 1.398 0.398 2.902 3.079 0.481 0.019 0.090 0.153 0.163 0 170 0.147 0.177 0.139 0.169 0.138 0.148 0.129 0.158 0.378 0.214 0.375 0.064 0.099 0.667 0.054 1.094 1.516 1.073 0.648 0.574 0.023 0.036 0.032 0.047 0.117 0.153 0.074 0.027 0.033 0.176 0.215 0.101 0.197 0.107 0.390 0.514 0.212 0.258 0.258 0.274 0.207 0.232 0.099 0.085 0.195 0.131 0.137 0.165 0.096 0.099 0.023 0.069 0.060 0.076 0.536 0.668 1.626 1.359 0.056 0.158 1.233 0.364 0.505 0.928 3.427 1.948 1.663 0.536 0.299 0.425 0.328 0.351 0.425 0.455 0.285 0.488 0.399 0.350 0.299 1.369 0.264 0.321 0.285 0.331 1.092 0.756 0.844 0.990 0.665 0.292 0.017 0.220 0.634 1.079 1.422 0.492 0.460 1.234 0.171 1.341 0.524 0.550 0.359 0.954 0.335 0.218 0.278 0.168 0.303 0.309

package: pheatmap

frea_heatmap <- pheatmap(counts)</pre>

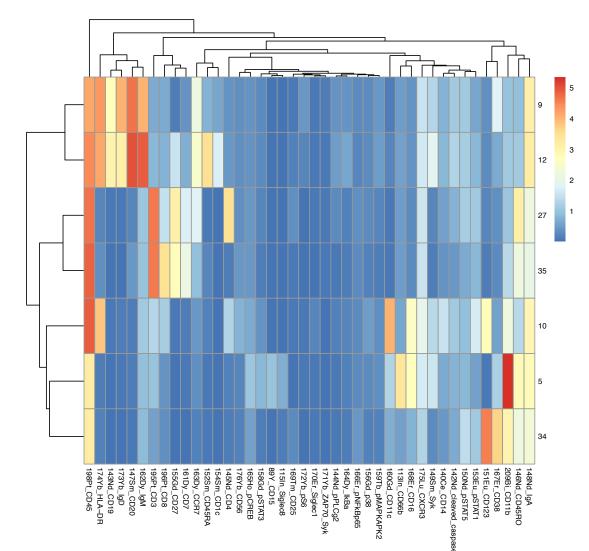
All frequencies

Running statistical testing on the frequency table, across conditions

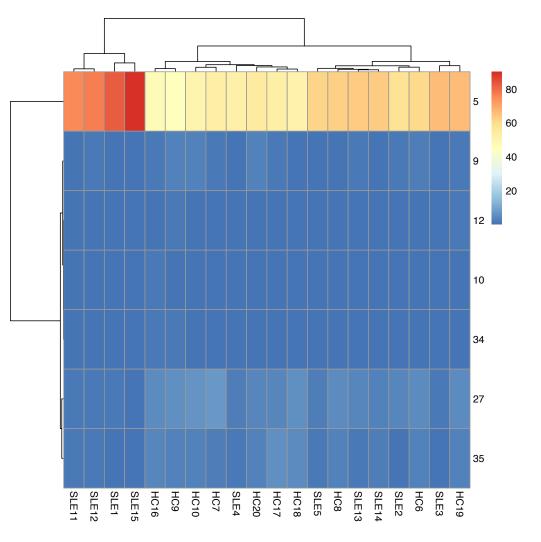

The full statistics wrapper

Define conditions of interest, stat test of interest, whether to use FDR Later versions use regression-based modeling with EdgeR (package: Diffcyt)

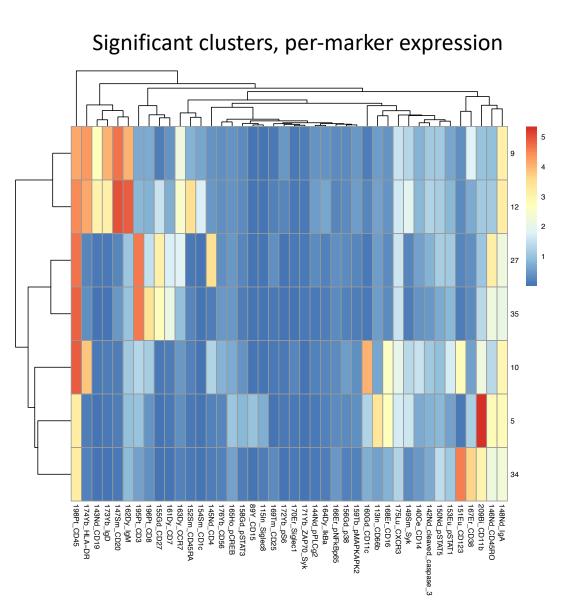
The point: just get your data into this frequency table format

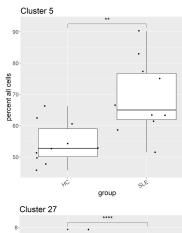

Output: p values ordered by cluster

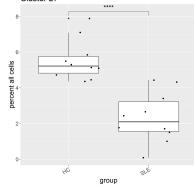
> (counts														
	SI F1	SI F11	SI F12	SI F13	SI F14	SI F15	SI F2	SI E S	SI F4	SI E5	НС10	HC16	HC17	HC18	_
1	2.355	2.517	5.980	4.244	4.817	1.841	2.922	2.617	6.485	10.721	5.776	6.014	5.907	5.365	
2	0.785	0.559	0.292	0.935	0.446	0.775	0.627	0.236	0.715	1.022	0.313	0.462	0.400	0.705	
3	0.740	0.683	0.368	0.578	0.568	0.413	0.943	2.605	1.137	0.647	0.562	0.572	0.641	0.299	
4	82.898	74.776	77.242	63.202	63.228	90.177	58.566	66.551	51.495	61.380	49.636	47.626	52.586	51.145	
5	0.316	0.390	0.099	0.227	0.287	0.092	0.182	0.285	0.147	0.141	0.172	0.201	0.129	0.092	
6	0.141	0.102	0.447	0.437	0.133	0.006	0.478	0.173	1.056	0.398	1.076	1.133	1.041	0.781	
7	0.474	0.294	0.250	0.053	0.332	0.058	1.398	0.398	2.902	3.079	0.481	0.048	0.090	0.019	
8	0.153	0.144	0.163	0.170	0.147	0.177	0.139	0.169	0.138	0.148	0.129	0.145	0.161	0.158	
9	0.378	0.206	0.214	0.375	0.064	0.099	0.667	0.054	1.094	1.516	1.073	1.028	0.648	0.574	
10	0.075	0.051	0.009	0.017	0.023	0.036	0.032	0.047	0.117	0.153	0.074	0.056	0.027	0.033	
11	0.176	0.146	0.046	0.274	0.215	0.101	0.197	0.107	0.390	0.514	0.212	0.258	0.207	0.258	
12	0.232	0.099	0.023	0.076	0.069	0.085	0.195	0.131	0.137	0.165	0.096	0.096	0.060	0.099	
13	0.536	0.668	1.626	1.359	0.056	0.158	1.233	0.364	0.505	0.928	3.427	1.948	1.663	1.156	
14	0.536	0.404	0.111	0.455	0.285	0.488	0.399	0.350	0.299	0.425	0.328	0.351	0.299	0.425	
15	1.369	0.264	0.017	0.321	0.285	0.331	1.092	0.756	0.844	0.990	0.665	0.220	0.188	0.292	
16	0.634	1.141	0.171	1.341	1.079	1.422	0.492	0.460	0.524	0.550	0.359	0.962	0.954	1.234	
17	0.450	0.831	0.132	0.381	0.200	0.303	0.309	0.335	0.218	0.278	0.168	0.250	0.208	0.214	
18	0.111	0.084	0.018	0.213	0.083	0.037	0.229	0.077	0.173	0.186	0.154	0.152	0.110	0.193	
19	0 260	0 140	0 526	0 137	0 263	0 127	0 208	0 358	0 604	0 261	0 241	0 086	0 121	0 136	

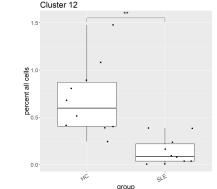


What to do with your statistical output: heatmaps


Significant clusters, per-cluster marker expression

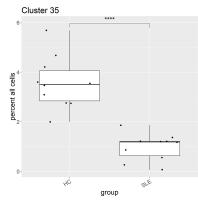


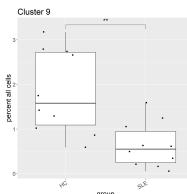

Significant clusters, per-marker frequency



What to do with your statistical output: plots

Package: ggplot2, ggsignif, gginnards


# Production and saving of	plots
stat_plots <- PlotWrapper(S	Sig_rows = sig_rows,
(Counts = counts,
ł	test = stat_test,
f	fdr = fdr_adj,
ļ	Add_p = add_p,
ł	to_save = TRUE,
($Comp_conds = comp_conds$,
	Control_cond = control_cond)


Cluster 34

Cluster 10

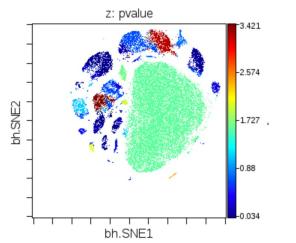
0.75

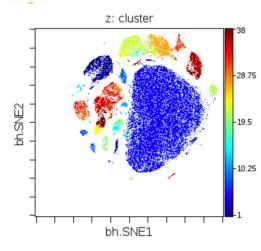
all cells

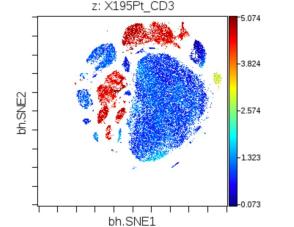
How to use dimension reduction effectively: visualizing output per-cell

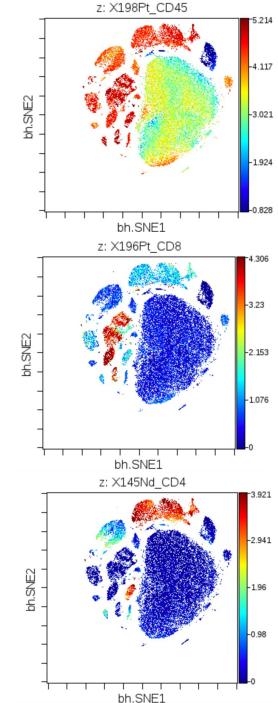
Places the pvalues into the subsampled cell data object

Performs t-SNE to a desired number of cells
final <- Sconify:::AddTsne(dat = final, input = surface)
write.csv(final, paste("final_output_t_test", ncells, "csv", sep = "."))</pre>

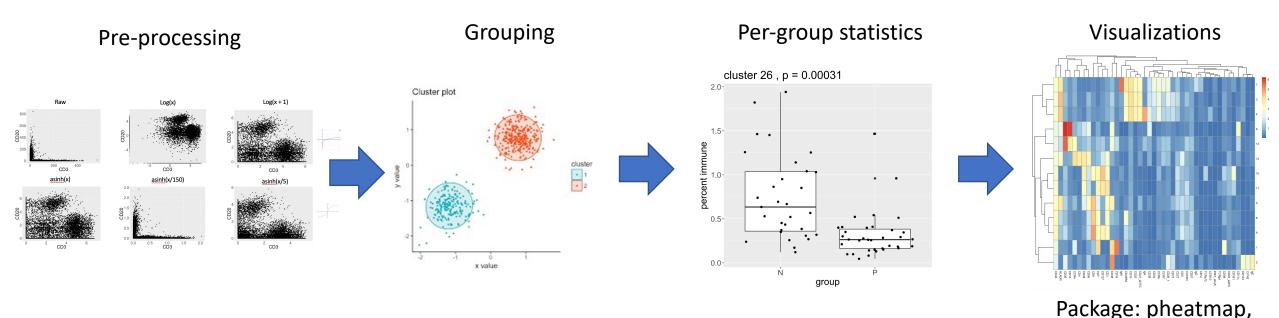

(or your favorite per-cell visualization tool)


Try visualizing distance to cluster centroid relative


to the nearest neighboring cluster centroid


-log10 * pvalue

Cytobank Premium



CyTOF analysis: general principles relevant to the DRFZ

Package: FlowCore Manual gating tools: FlowJo, Cytobank

Package: FlowSOM

Others to try: Phenograph, X-shift Package: ggplot2, ggsignif, gginnards

Rtsne

Others to try: UMAP

Visualization tools:

FlowJo, Cytobank

Key takeaways from the pipeline

- Make an expression matrix of cells, including File ID.
- Whatever method I do, I add to the matrix above (cluster ID, p-values)
 - Makes the pipeline robust to new tools
- I visualize my data and results by any possible means: plots, heatmaps, dimension reduction, etc
- I always check my results at every step, to make sure they make sense (Interactive programming languages are good for this)

Department of Immune Monitoring

Andreas Grützkau

Marie Urbicht

Department of Mass Cytometry

Henrik Mei

Axel Schulz

Sabine Baumgart

Heike Hirseland

Silke Stanislawiak

Antonia Niedobitek

Julia Schulze

Edward Rullmann

Sarah Gräßle

Eva Holzhäuser

Thank

You!

Deutsches Rheuma-Forschungszentrum 34 Ein Institut der Leibniz-Gemeinschaft