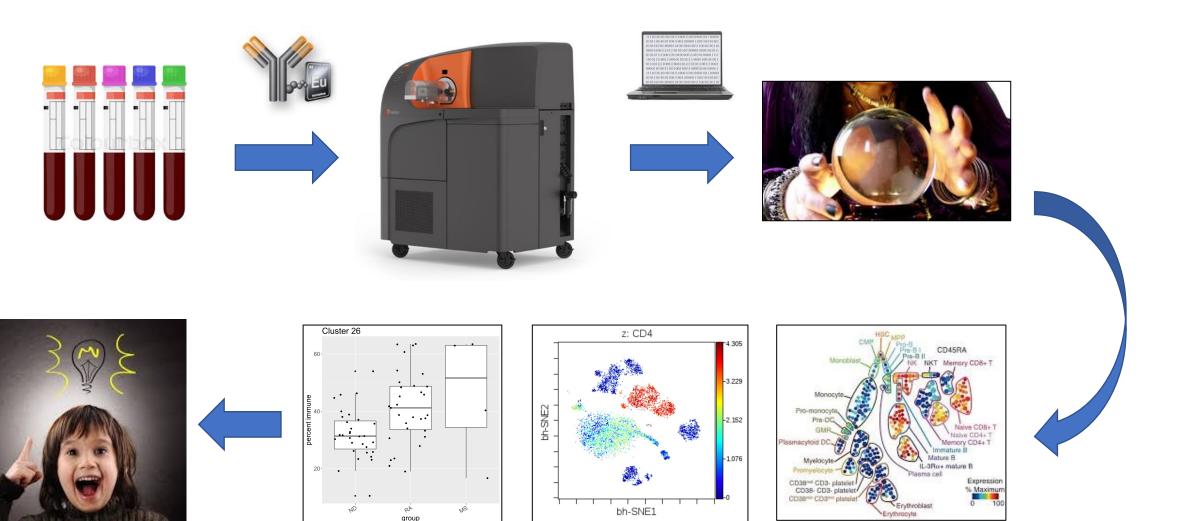
A comprehensive interrogation of the t-SNE algorithm for mass cytometry analysis

Tyler J Burns, PhD

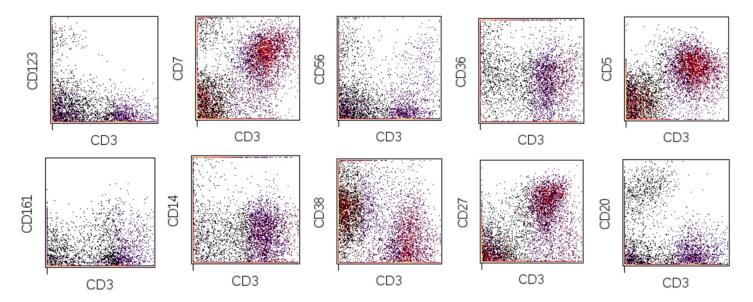
AG Mei

Deutsches Rheuma Forschung Zentrum

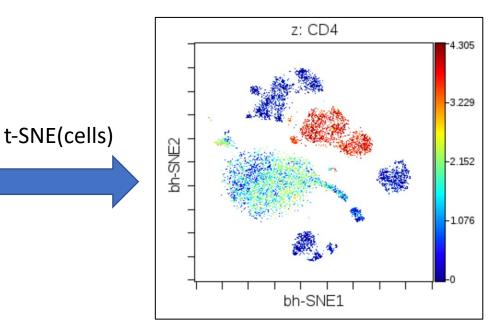
The big picture: from machine to human



t-SNE makes large amounts of information humanpalatable without too much human work



CD235 61 CD19 CD11b CCR7 CD123 CD127 CD45RA <db1> <dbl> <dbl> <dbl> <db1> <dbl> <dbl> $\langle dbl \rangle$ <db1> <dbl> <dbl> <db1> $\langle dbl \rangle$ 0.965 0.149 0.110 0.251 0.122 4.20 0.0795 0.100 0.0660 0.0226 0.0246 0.117 0.102 0.0859 1.28 0.371 0.355 0.009<u>38</u> 0.043<u>5</u> 0.036<u>8</u> 0.072<u>5</u> 2.37 2.39 1.34 0.164 0.0527 0.0280 0.0478 0.0522 0.396 0.00146 0.0749 0.0681 0.1000 1.31 0.186 0.321 0.0664 0.0239 0.0965 0.114 0.141 0.127 0.378 0.0597 0.0377 0.565 0.145 0.184 0.151 0.102 0.0396 0.637 0.0602 1.90 0.101 0.0496 0.014<u>4</u> 0.102 0.846 0.053<u>1</u> 0.040<u>6</u> 0.014<u>1</u> 1.23 3.17 0.265 0.252 2.54 0.939 0.929 0.059<u>5</u> 0.030<u>5</u> 0.028<u>3</u> 2.70 0.030<u>3</u> 0.023<u>6</u> 0.064<u>6</u> 0.029<u>3</u> 0.070<u>1</u> 0.103 0.041<u>3</u> 0.078<u>2</u> 0.613 0.167 0.008<u>65</u> 0.006<u>32</u> 1.26 0.127 0.<u>3</u>15 0.0410 0.184 0.0140 0.00240 0.0855 0.196 0.727 0.150 0.0864 8 0.0512 0.385 0.0642 0.116 1.54 0.713 0.0576 0.0625 0.00486 0.0715 0.146 0.134 0.155 0.0125 0.166 0.284 0.0826 0.262 0.181 0.0847 2.49 0.135 0.168 0.0706 0.109 0.0492 0.0467 0.141 0.175 0.0554 0.274 0.142 10 0.123 0.0829 0.0339 0.127 1.21 0.0545 0.0907 0.119 0.0835 0.129 0.0768 0.134 0.0329 0.0990 0.0405 0.151 with 9,990 more rows, and 14 more variables: CD16 <dbl>, CD25 <dbl>, CD3 <dbl>, CD66 <dbl>, CD56 <dbl>, HLADR <dbl>, V1 <dbl>, V2 <dbl>, BC1 <dbl>, BC2 <dbl>, BC3 <dbl>, BC4 <dbl>, BC5 <dbl>, BC5 <dbl>, BC6 <dbl>



Amir et al, Nat Biotechnology 2013

Background: the t-SNE algorithm as a dimension reducer

Visualizing Data using t-SNE

Laurens van der Maaten

LVDMAATEN@GMAIL.COM

HINTON@CS.TORONTO.EDU

TiCC Tilburg University P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton

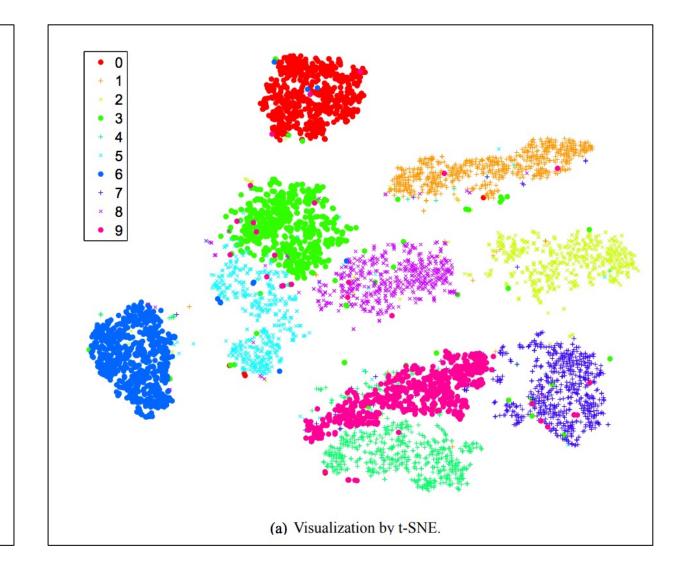
Department of Computer Science University of Toronto 6 King's College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

Abstract

We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms, multidimensional scaling



viSNE: the adaptation of t-SNE to CyTOF

<u>Nat Biotechnol</u>. Author manuscript; available in PMC 2014 Jul 1. Published in final edited form as: <u>Nat Biotechnol. 2013 Jun; 31(6): 545–552.</u> Published online 2013 May 19. doi: <u>10.1038/nbt.2594</u> PMCID: PMC4076922 NIHMSID: NIHMS586764 PMID: <u>23685480</u>

viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

El-ad David Amir,¹ Kara L Davis,^{2,3} Michelle D Tadmor,^{1,3} Erin F Simonds,^{2,3} Jacob H Levine,^{1,3} Sean C Bendall,^{2,3} Daniel K Shenfeld,^{1,3} Smita Krishnaswamy,¹ Garry P Nolan,^{2,4} and Dana Pe'er^{1,4,*}

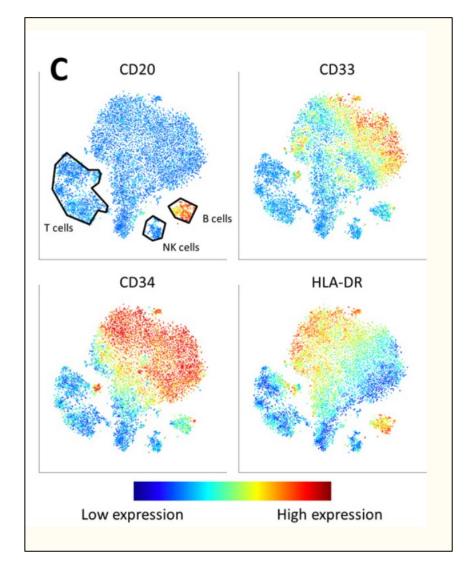
Author information ► Copyright and License information ► Disclaimer

The publisher's final edited version of this article is available at <u>Nat Biotechnol</u> See other articles in PMC that <u>cite</u> the published article.

Abstract

Go to: 🕑

High-dimensional single-cell technologies are revolutionizing the way we understand biological systems. Technologies such as mass cytometry measure dozens of parameters simultaneously in individual cells, making interpretation daunting. We developed viSNE, a tool to map high-dimensional cytometry data onto 2D while conserving high-dimensional structure. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow maps into a canonical shape that separates between immune subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are distinct from the healthy map and from each other. viSNE highlights structure in the heterogeneity of surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a rare leukemia population in minimal residual disease settings. As several new technologies raise the number of simultaneously measured parameters in each cell to the hundreds, viSNE will become a mainstay in analyzing and interpreting such experiments.



There are many other dimension reduction tools, but t-SNE is the most accessible

Cytobank

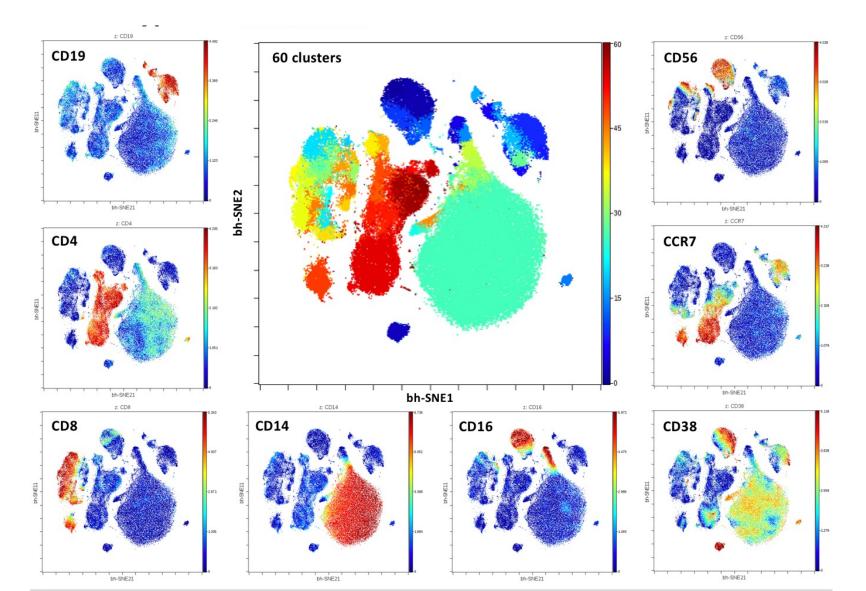
🟠 Gating
🏠 Gating
🟠 Gating
Column Plate
0.csv
0

FlowJo

FlowJo File Edit Workspace Tools	Configure			₹ ♡ ?
Create Copy analysis to group Group selected samples AIB Rename Nodes	Flowjo Exchange			
Group (x) Copy value to group Groups Populati	Add Open/Save Plugin	of Ke	ywords	
oup	AutoPeakGate			
{] } All Samples				Tes
{III} Compensation	CellOntology		C	ompensation
{] } Master Gates	DownSample		Non	
G Singlets				
✓ ③ Lymphocytes	TSne 2	. Select	ISne	
▼ ⓒ Live				
③ Q1: CD4- , CD8+				
Q2: CD4+ , CD8+				
③ Q3: CD4+ , CD8-				
Q4: CD4- , CD8-				
CD3-DR-				
③ DR+				
Name	Statistic	#Cells	*STIM	*PID
LD1_NS+NS_A01_exp.fcs		250342	NS+NS	LD
LiveDown20000				
	91.9	229963		
Eymphocytes	99.8	229512		
🚽 🕄 Live	95.6	219377		
DownSample of Live-LiveDown20000)			
	76.3	167454		
Q1: CD4- , CD8+	20.1	33589		
Q2: CD4+ , CD8+	1.61	2702		
③ Q3: CD4+ , CD8-	76.4	127856		
③ Q4: CD4- , CD8-	1.99	3333		
CD3-DR-	Select Inpu	21475		
	Select linbu	it Gate,		
🕄 LiveDown20000.Pop 🥌	9.12	20000		
LD1_NS+PI_C01_exp.fcs		229585	NS+PI	LD
- Singlets	93.0	213433		
	99.8	213022		
 Eymphocytes 	96.0	204491		
V S Live				
	77.1	157680		

But what hidden information about t-SNE should we know for its proper use?

Why is t-SNE popular? In part because it looks nice and major subsets group together



Axel Schulz, Ph.D.

Credit for the following t-SNE visualization slides

StatQuest: t-SNE, Clearly Explained

17,938 views

489 489 10

S

StatQuest with Josh Starmer Published on Sep 18, 2017

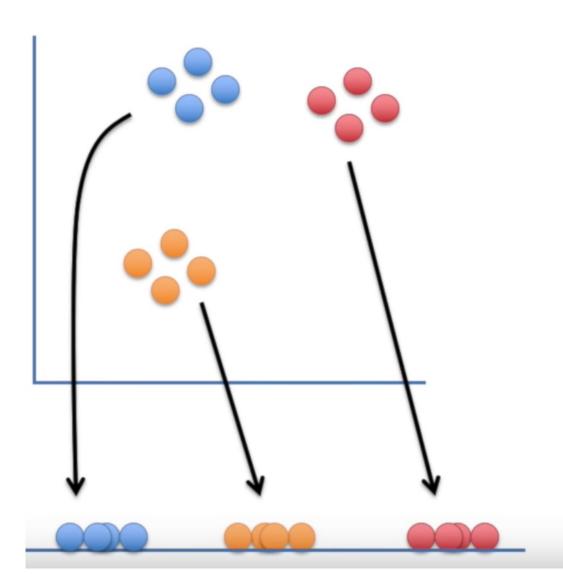
t-SNE is a popular method for making an easy to read graph from a complex dataset, but not many people know how it works. Here's the dope! Also, if you'd like to see a code example in R, here's one:

SHOW MORE

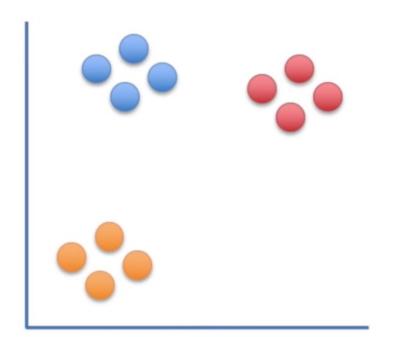
The goal of t-SNE is to reduce dimensions while preserving specific information

Higher dimensional space

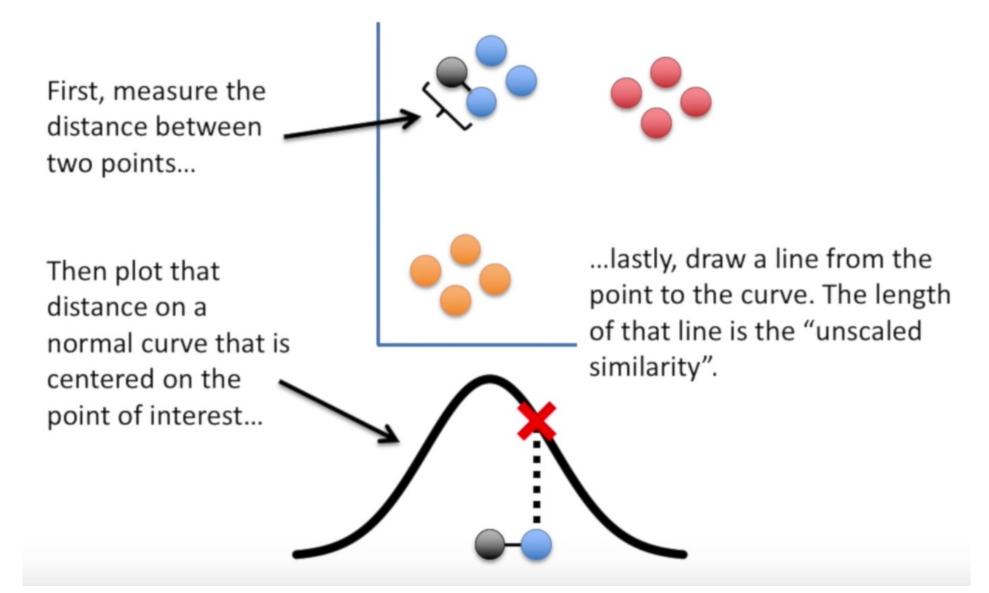
Low dimensional embedding



t-SNE starts with a low-d embedding of randomly placed points



t-SNE makes similarity scores...like distance but fitted to a distribution



These similarity scores go into similarity matrices

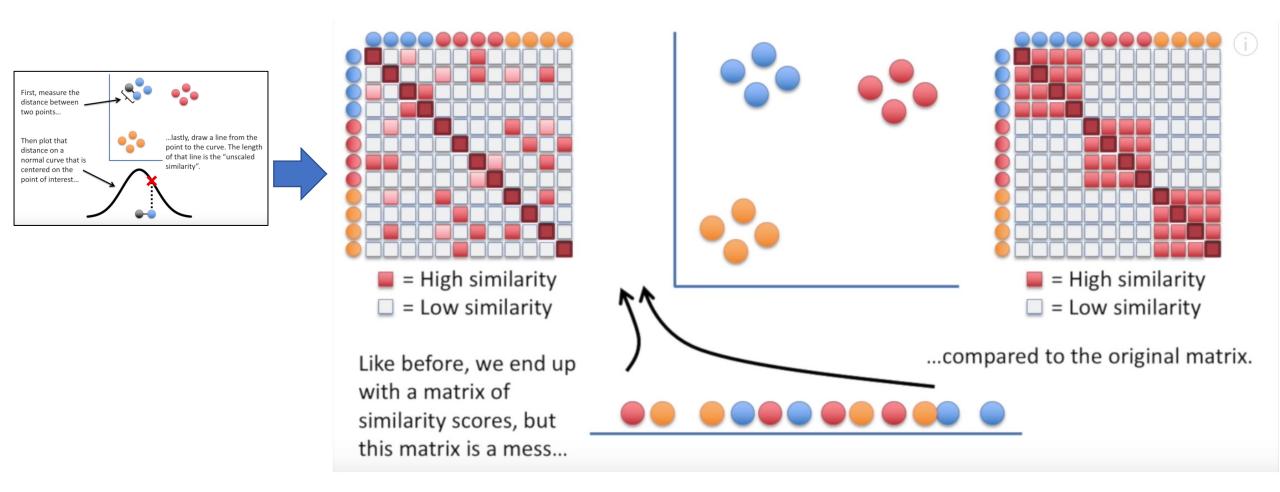
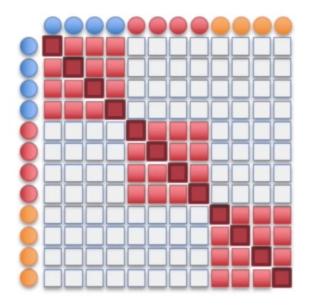
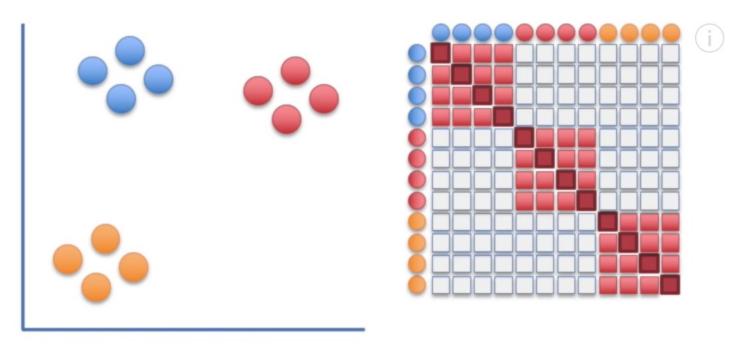
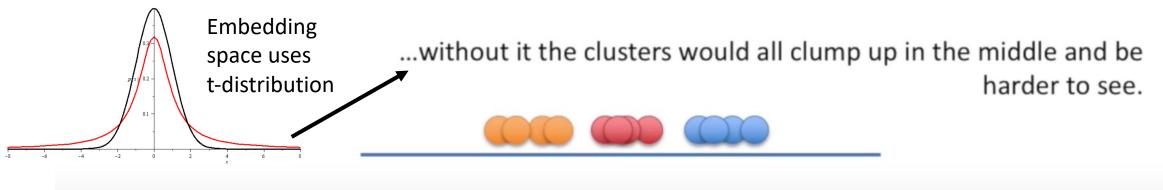


Image source: YouTube: StatQuest with Josh Starmer: *t-SNE, clearly explained*

Make these similarity matrices as similar to each other as possible, and then you're done





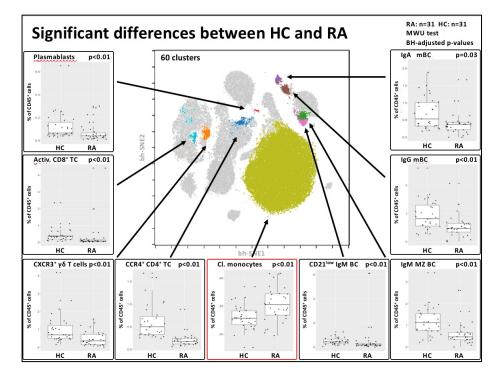


Two main uses of t-SNE

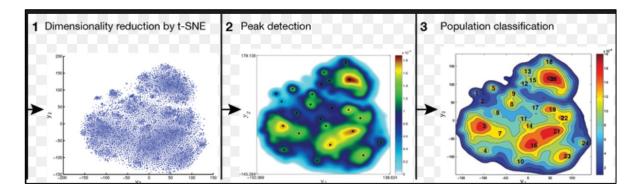
• Data visualization tool

- Early phases: gain intuition about data
- Late phases: summarize statistical output
- Part of a data analysis pipeline
 - Gating a t-SNE map
 - Clustering a t-SNE map

Example: Axel Schulz, AG Mei



Example: ACCENSE



The organization of my talk

- Part 1: Show how varying input affects t-SNE output (so you don't have to)
- Part 2: Determine whether we can and/or should gate and cluster a t-SNE map

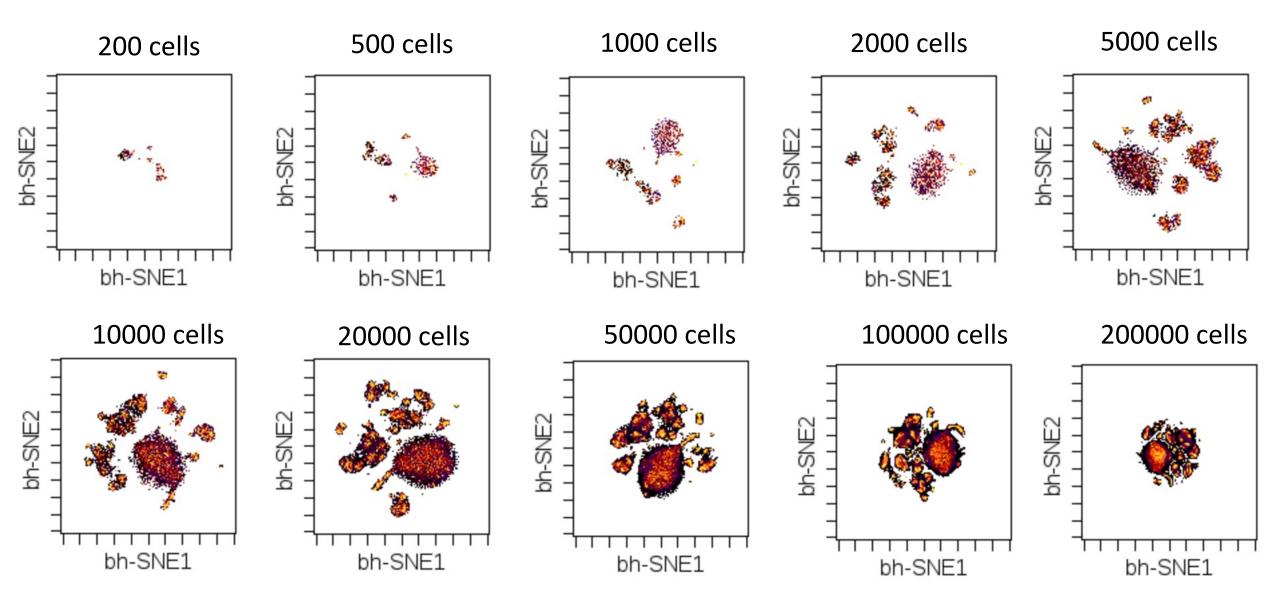
The organization of my talk

- Part 1: Show how varying input affects t-SNE output (so you don't have to)
- Part 2: Determine whether we can and/or should gate and cluster a t-SNE map

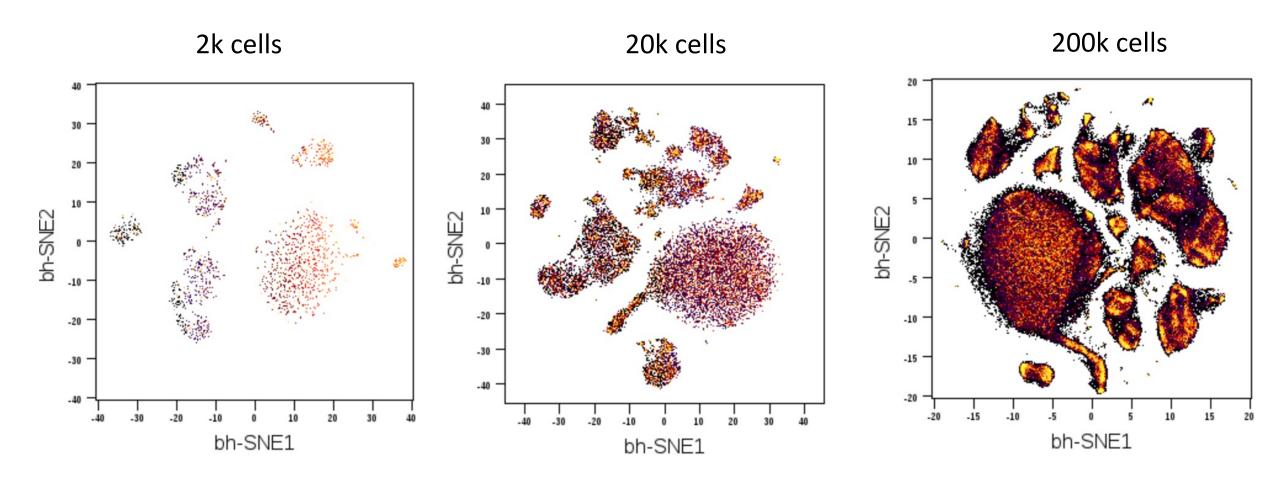
What happens to t-SNE output when you vary the number of cells?

- t-SNE is typically viewed on a sub-sampled data due to run-time issues
- Data: healthy human PBMCs
- Procedure: run t-SNE with subsampled cells, ranging from 100 to 200,000.
- Visualize as a biaxial plot colored by the kernel density estimation
- Check to make sure the major subsets are still being compartmentalized

Altering the number of cells affects the amount of embedding space



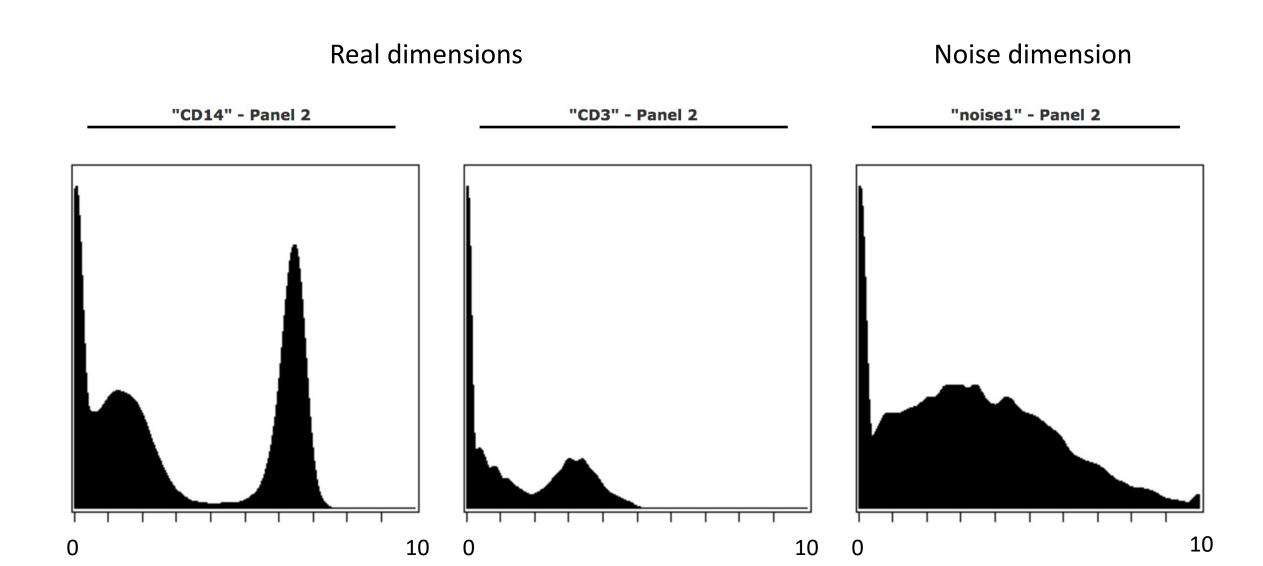
Global structure of t-SNE map doesn't appear to be affected by embedding space compression



How robust is t-SNE visually to noise?

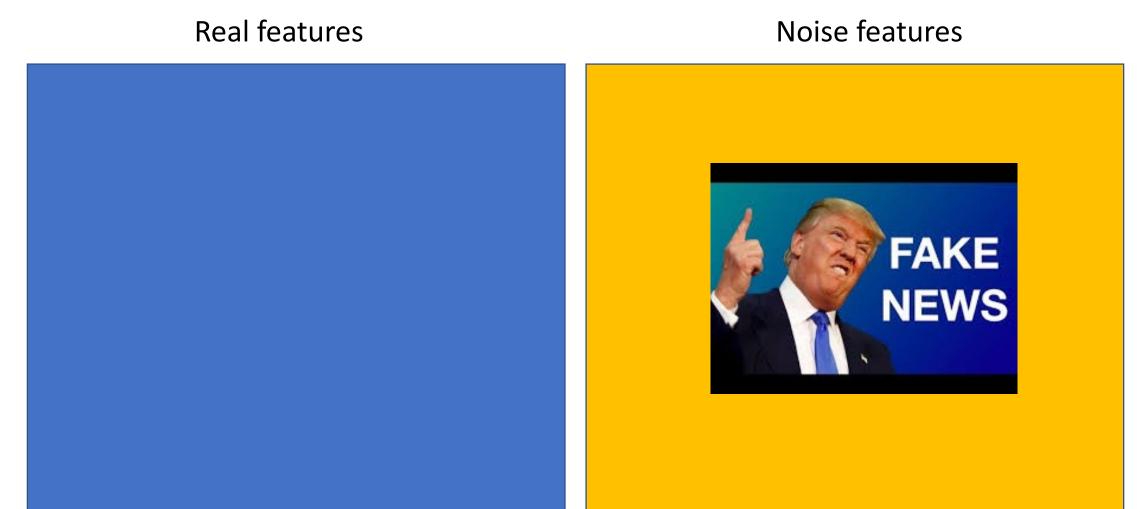
- Do "bad" or noisy markers mess up the output of the t-SNE map?
- Data: healthy human PBMCs (same as before). Simplified dataset with 6 markers.
- Procedure: Add random unimodal noise channels to the end of the dataset, and visualize the t-SNE output.
- Visualize as biaxial plot colored by Kernel Density Estimation

What adding noise to a dataset looks like



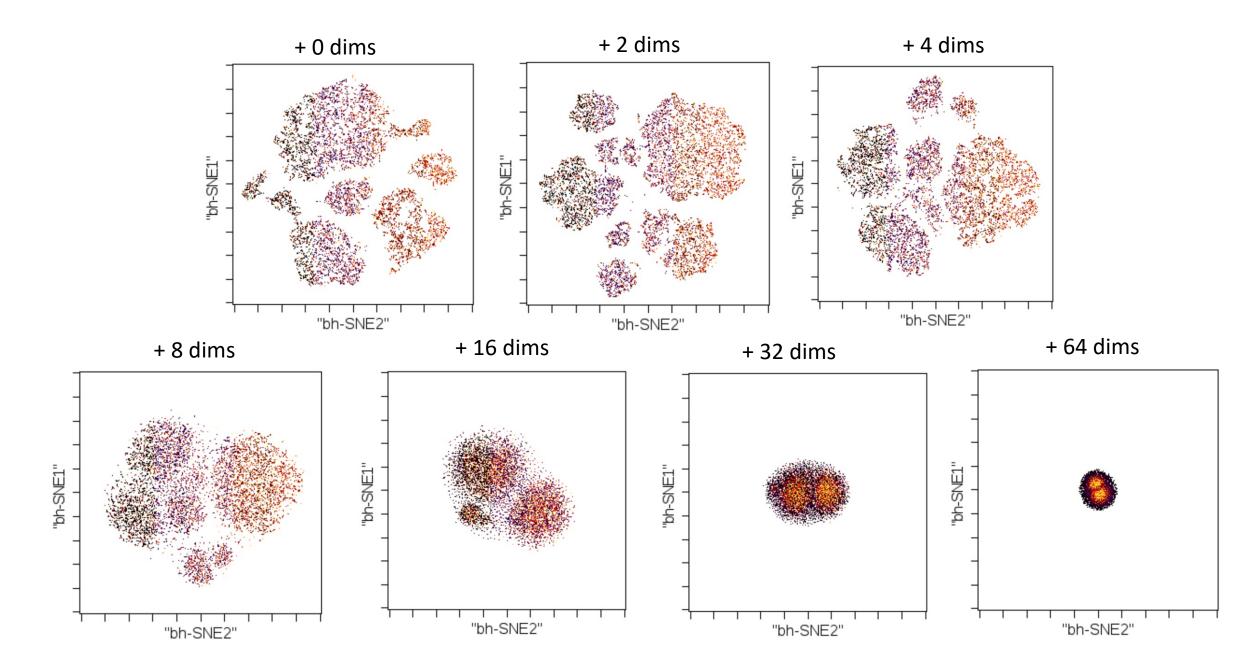
The structure of the data with noisy dimensions

Run t-SNE using ALL OF THIS



Cells

Adding noise dimensions adversely affects t-SNE



Summary 1

- Adding more cells as input squishes the t-SNE output to the center
- Adding more cells as input maintains the shape of the islands, adds density details
- Adding noise dimensions adversely affects the topology of the t-SNE map. So choose your panels carefully.

The organization of my talk

- Part 1: Show how varying input affects t-SNE output (so you don't have to)
- Part 2: Determine whether we can and/or should gate and cluster a t-SNE map

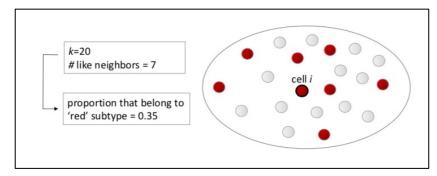
Low-dimension fidelity has been only recently addressed for single cell data

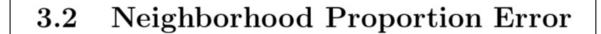
Comparative Analysis of Linear and Nonlinear Dimension Reduction Techniques on Mass Cytometry Data

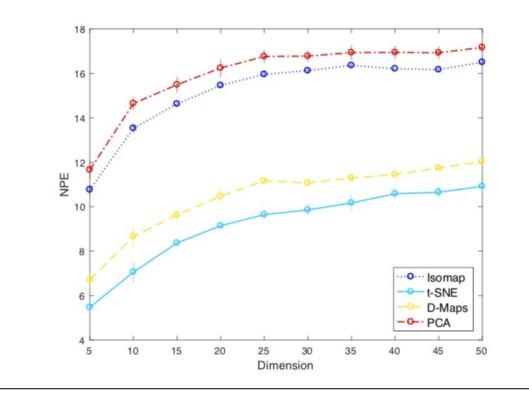
Anna Konstorum^{*1}, Nathan Jekel², Emily Vidal³ and Reinhard Laubenbacher^{1,4}

¹Center for Quantitative Medicine, UConn Health, Farmington, CT
 ²Department of Mathematics, Indiana University East, Richmond, IN
 ³Department of Mathematics, Angelo State University, San Angelo, TX
 ^{1,4}Jackson Laboratory for Genomic Medicine, Farmington, CT

This is based on manual gating, like the F1 Score for Clustering

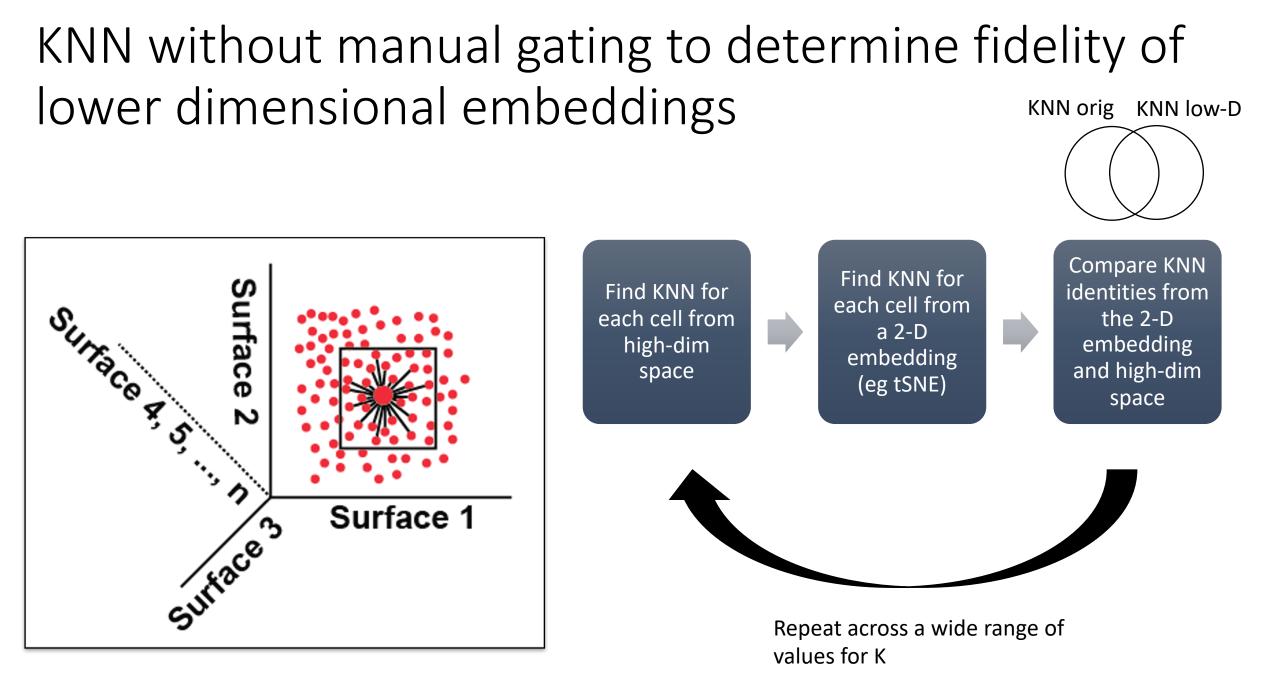






What is still needed from Low-D fidelity analysis

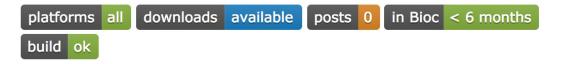
- Manual gating-free fidelity measure
- A way to assess LOCAL fidelity rather than global fidelity
- A deep-dive into a single algorithm rather than a high-level overview of multiple algorithms
- A software pipeline (eg. R package) that can incorporate new algorithms as they come out AFTER the paper is out.



Bioconductor package: Sconify

Software for your KNN-based CyTOF needs

Sconify



This is the **development** version of Sconify; for the stable release version, see Sconify.

A toolkit for performing KNN-based statistics for flow and mass cytometry data

Bioconductor version: Development (3.8)

This package does k-nearest neighbor based statistics and visualizations with flow and mass cytometery data. This gives tSNE maps"fold change" functionality and provides a data quality metric by assessing manifold overlap between fcs files expected to be the same. Other applications using this package include imputation, marker redundancy, and testing the relative information loss of lower dimension embeddings compared to the original manifold.

Author: Tyler J Burns

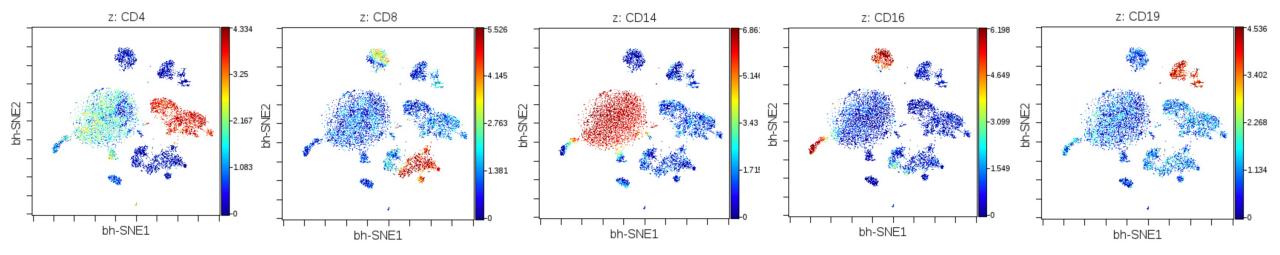
Maintainer: Tyler J Burns <burns.tyler at gmail.com>

Citation (from within R, enter citation("Sconify")):

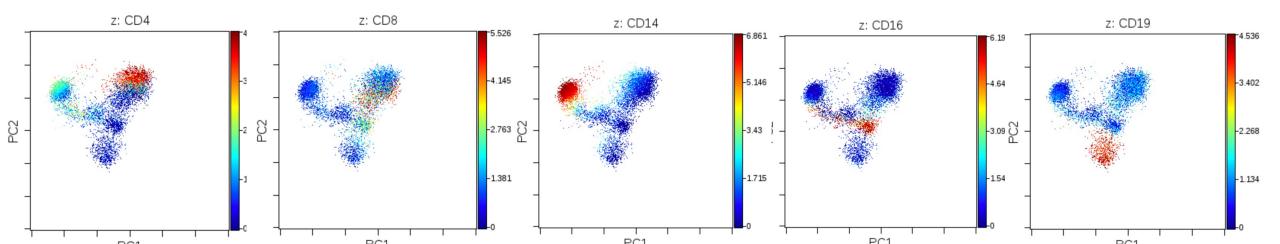
Burns TJ (2018). *Sconify: A toolkit for performing KNN-based statistics for flow and mass cytometry data*. R package version 1.1.0.

A quick review: Principal Components Analysis (PCA) vs t-SNE

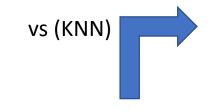
t-SNE (how most people do dim reduction for CyTOF)



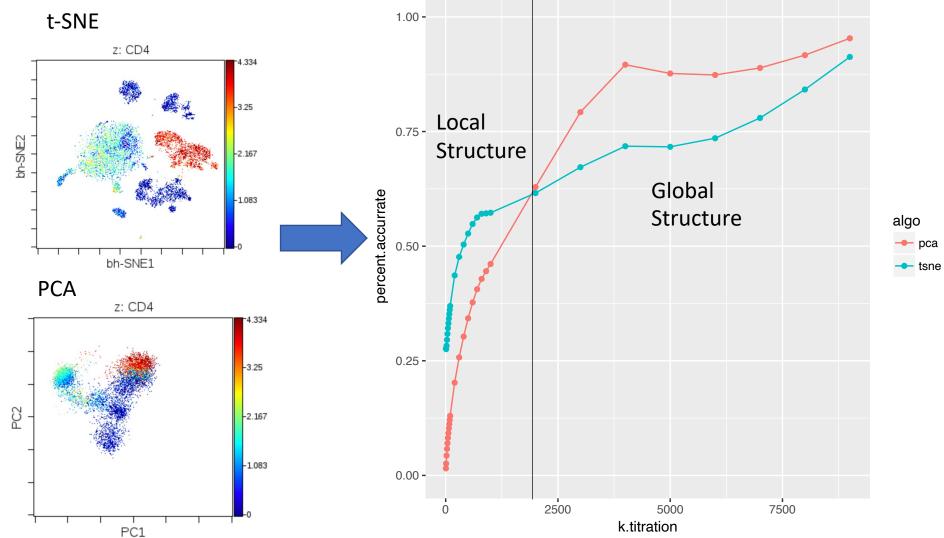
PCA (the old or first-pass way of dim reduction)



t-SNE preserves local structure at the expense of global structure

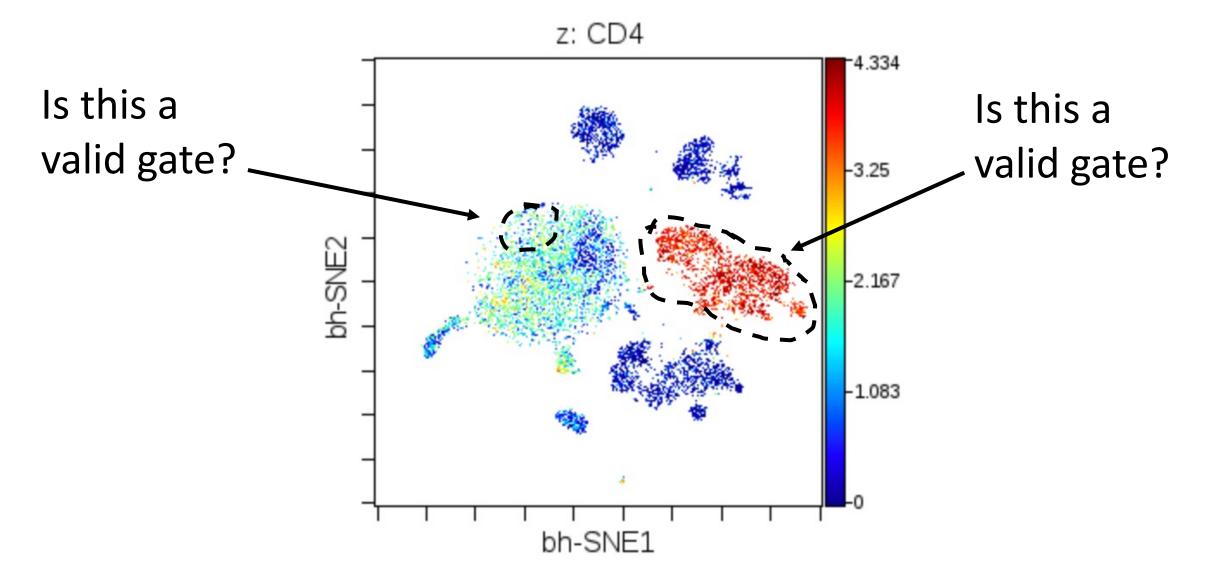


High-dimensional space



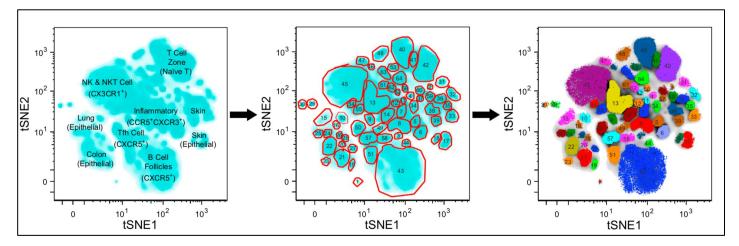
KNN fidelity of low-D embeddings

Does t-SNE preserve some regions better than others (should we gate the map?)

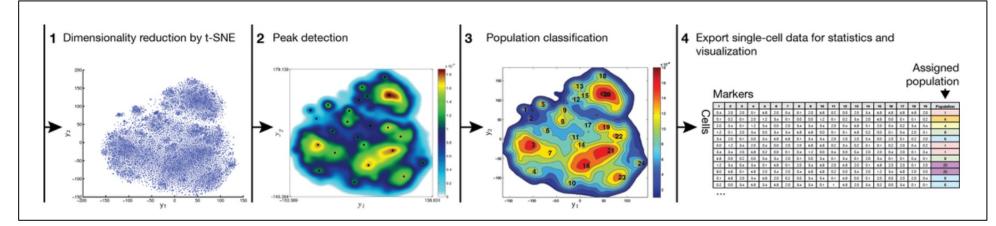


People are already gating and clustering t-SNE maps! Is this ok??

Michael Wong and Evan Newell: Manually gating a t-SNE map



Accense (Petter Brodin): Clustering a t-SNE map



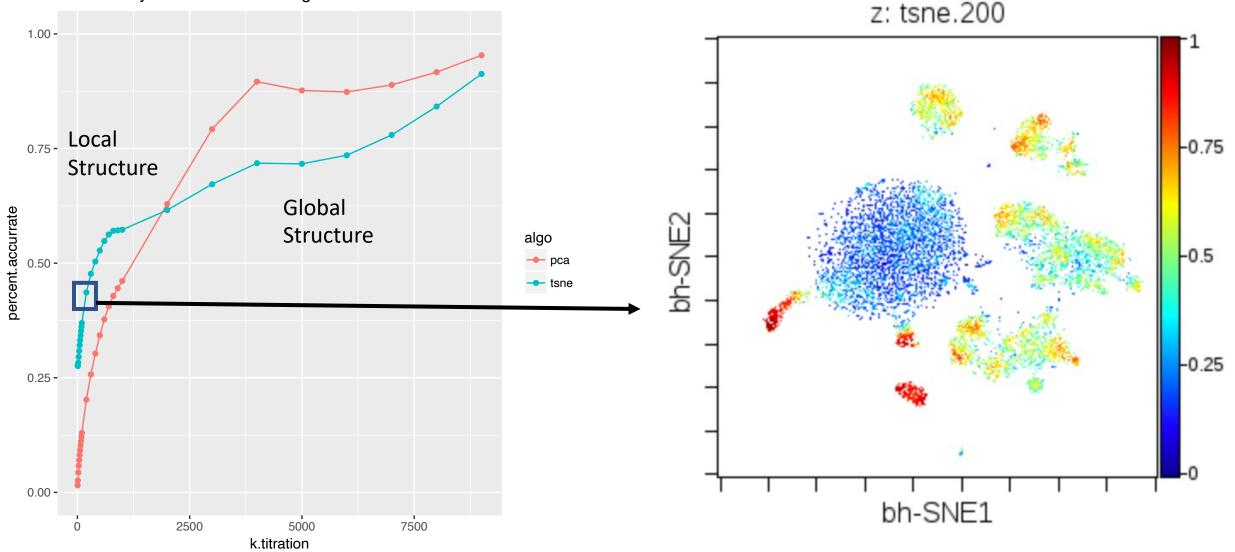
Shekar *et al, PNAS* 2014

Wong *et al*,

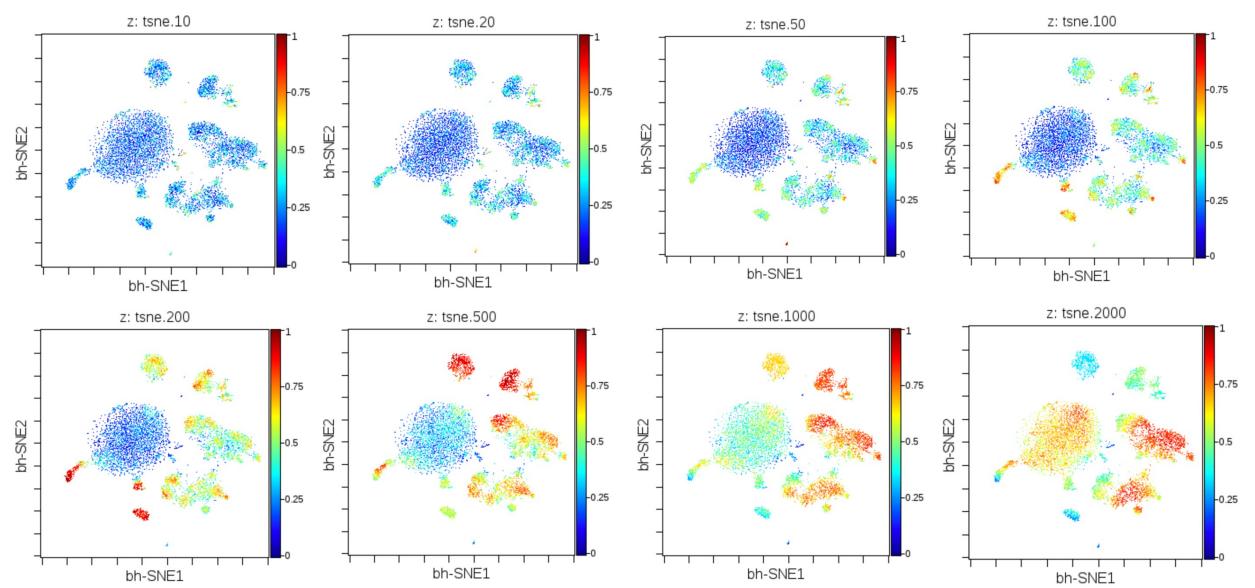
Cell 2016

Method: color t-SNE map by KNN fidelity for a given set of values K

KNN fidelity of low-D embeddings

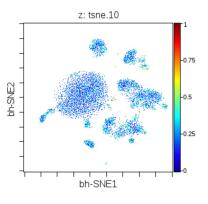


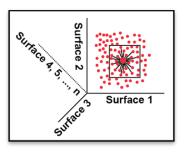
Local t-SNE fidelity sets guidelines for t-SNE clustering and gating



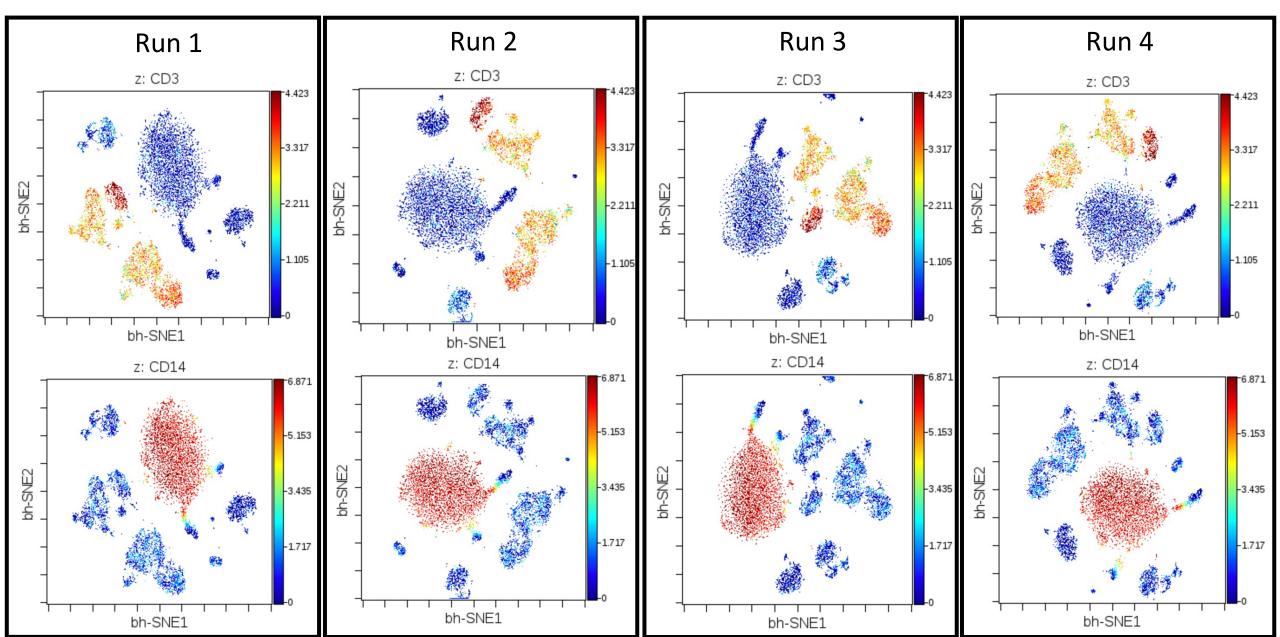
How consistent is one t-SNE run from another?

- Run t-SNE many times
- Determine visual similarity of t-SNE maps
- Determine global KNN similarity of t-SNE maps
- Determine local KNN similarity of t-SNE maps

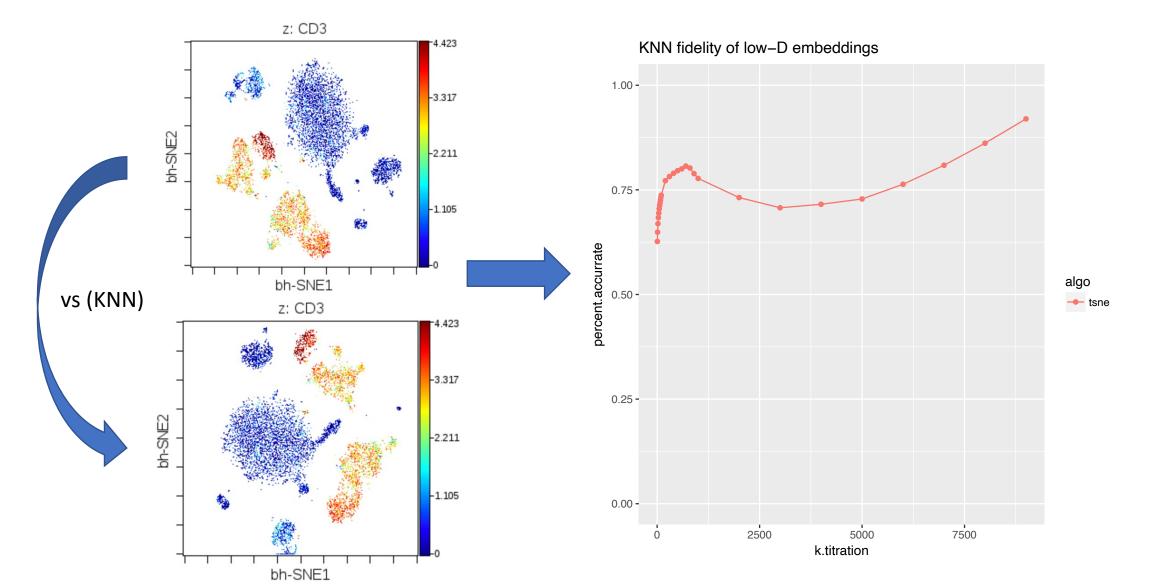




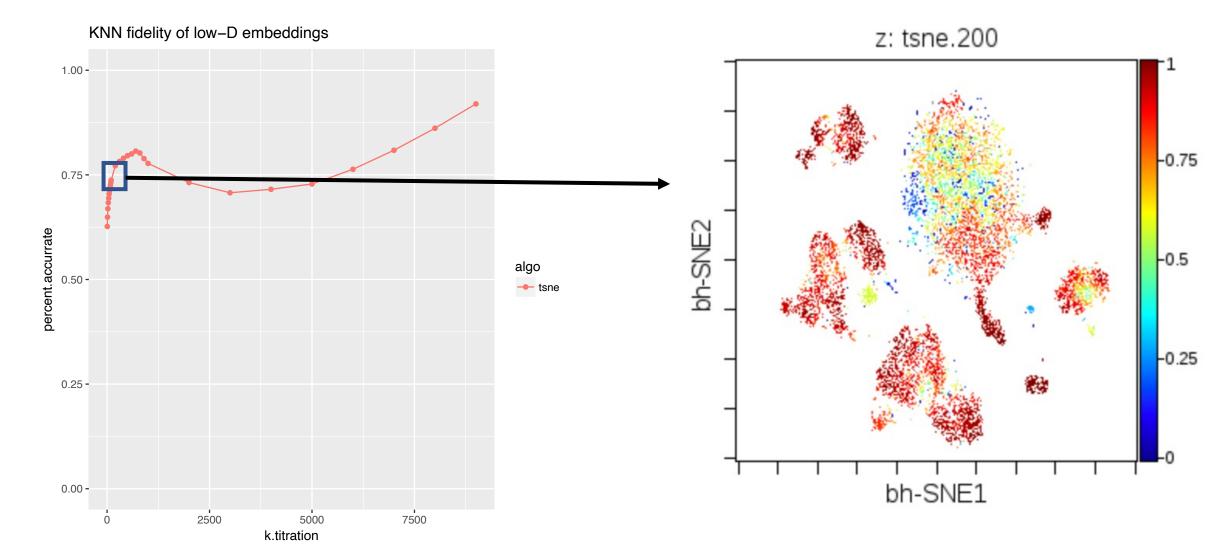
No two t-SNE maps are the same



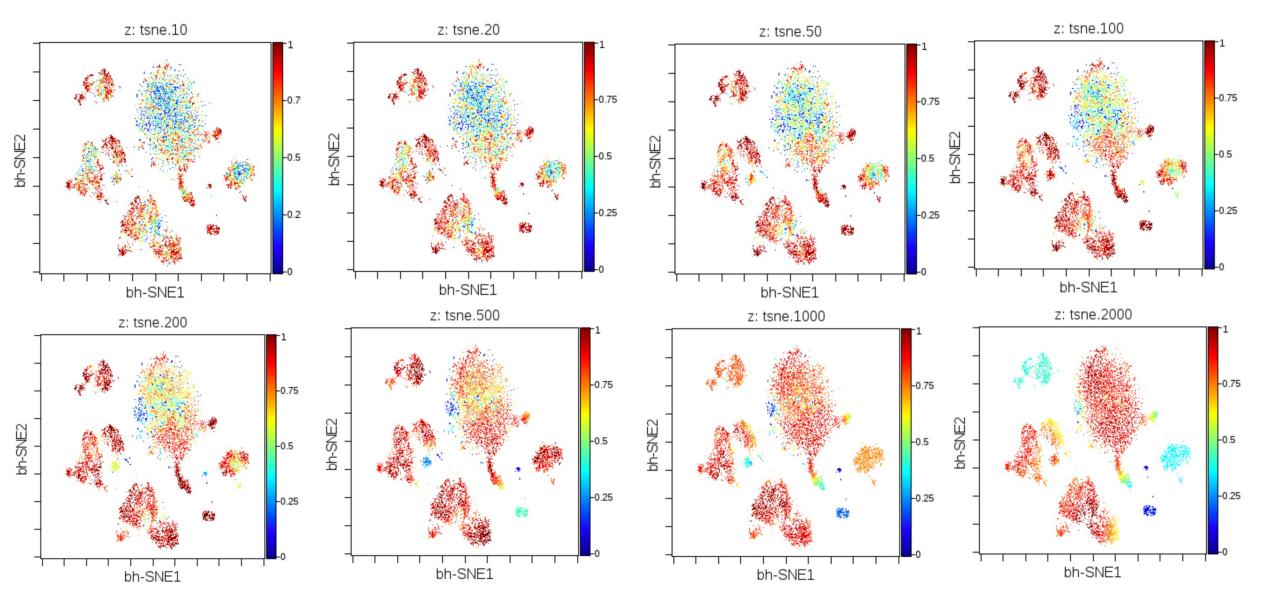
How consistent is one t-SNE run from another: KNN inspection



Method: color t-SNE map by KNN fidelity for a given set of values K



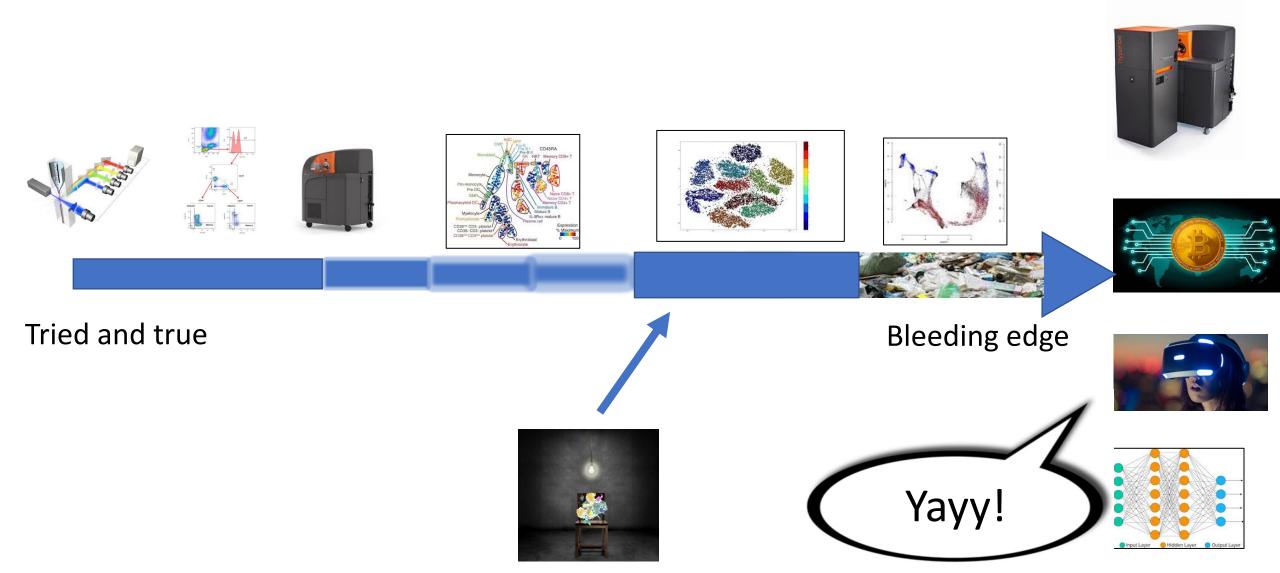
How consistent is one t-SNE run from another: KNN inspection



Summary 2

- t-SNE fidelity can be probed using KNN across a wide range of sizes
- t-SNE preserves local structure at the expense of global structure, with local
- t-SNE preserves particular regions more rigorously than others, and this can be used to guide any t-SNE based gating or clustering strategy
- t-SNE preserves local structure with roughly 60-80% consistency, while global island positions are jumbled across runs

Conclusion: the structure of innovation



Acknowledgement

DRFZ ERLIN Deutsches Rheuma-Forschungszentrum Ein Institut der Leibniz-Gemeinschaft

Cytodiagnostics, Canada

Ben Pacheco

Miltenyi BioTec

Christian Dose, Susanne Krauthäuser

Silke StanislawiakSabine BaumgartMarie UrbichtChristina SchäferSarah GillertHeike HirselandTyler BurnsLisa BudzinskiEdward Rullmann

Stanford

Michael Leipold

Holden Maecker, Mark Davis, Garry Fathman

Prof. Dr. Susanne Hartmann Institut für Immunologie Dr. Svenja Steinfelder Institut für Immunologie

Scailyte

Manfred Claassen, Daniel Sonnleithner

Prof. Dr. Andreas Krause Innere Medizin, Rheumatologie und Klinische Immunologie Prof. Dr. Andreas Michalsen Naturheilkunde

