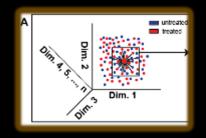
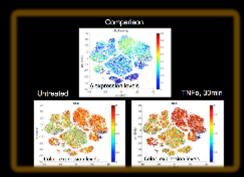
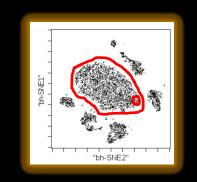
Nearest neighborhood-based comparisons across biological conditions in single cell data

2 February 2018 Tyler J Burns, PhD AG Mei at DRFZ

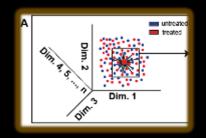

Outline

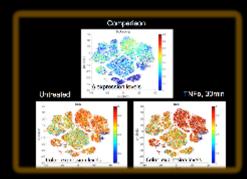

Building per-cell k-nearest neighborhoods in high-D space

Making single-cell comparisons across t-SNE maps

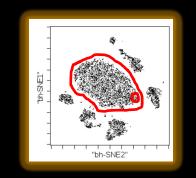

Establishing an evaluation metric for data quality

Evaluating the fidelity of lower-dimensional embeddings

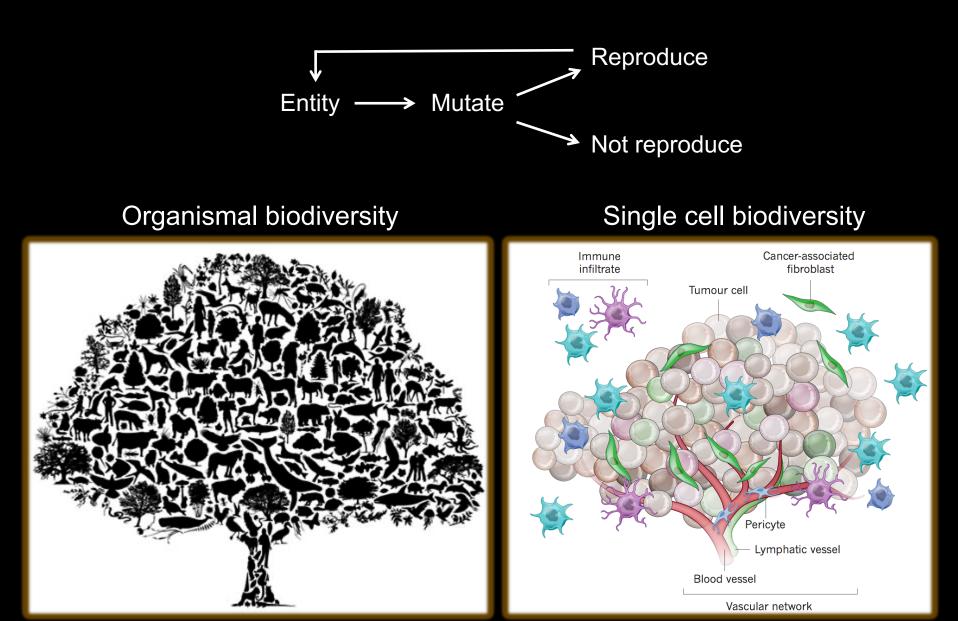

Outline

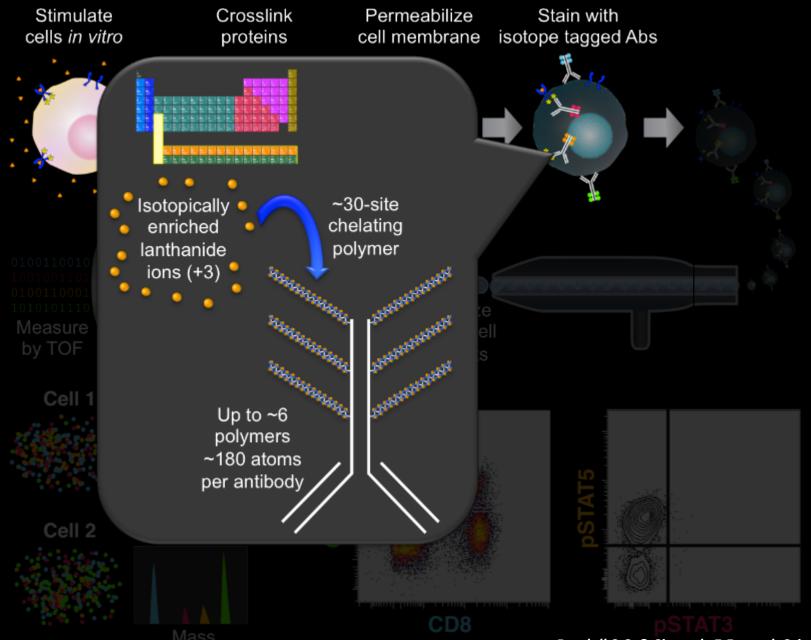

Building per-cell k-nearest neighborhoods in high-D space

Making single-cell comparisons across t-SNE maps


Establishing an evaluation metric for data quality

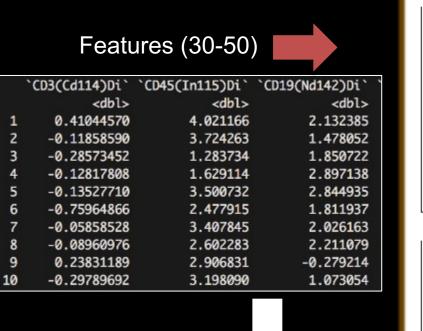
Evaluating the fidelity of lower-dimensional embeddings

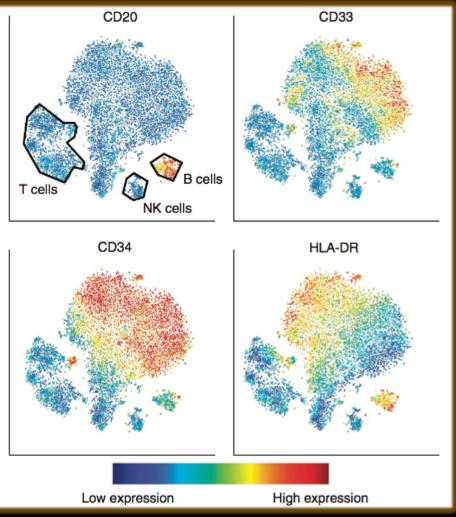




Biodiversity exists between organisms and between cells

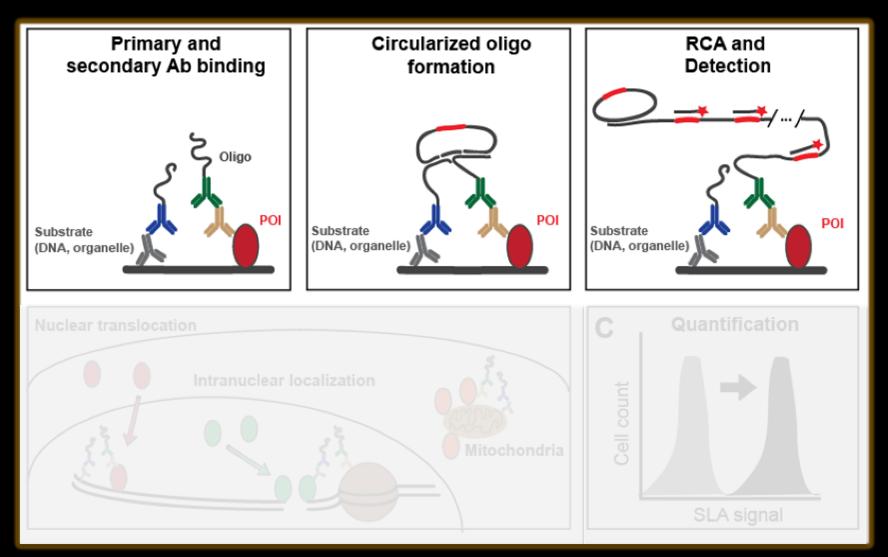
Slide adapted from Sean Bendall


Mass cytometry is a powerful technique for single-cell analysis



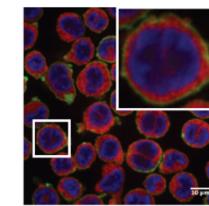
Bendall S.C. & Simonds E.F., et al. Science (2011)

Dimension reduction algorithms (eg. t-SNE) map highdimensional data to two dimensions

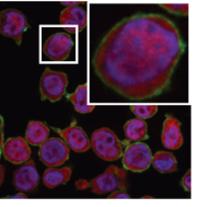

challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while

Cells $(10^{4} - 10^{6})$

Subcellular Localization Assay brings visualspatial information to flow and mass cytometry


Burns et al, Cytometry 2017

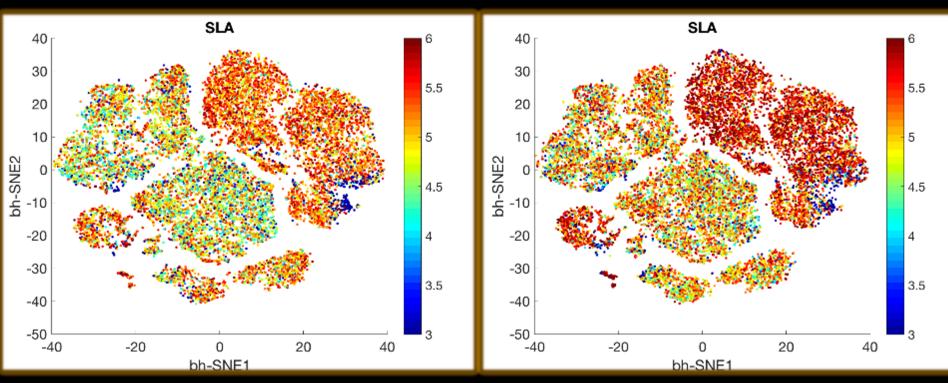
Nuclear import of NF-kB can be visualized with flow cytometry


Confocal microscopy

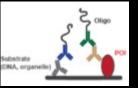
THP-1 cells Hoechst/NFkB/CD45

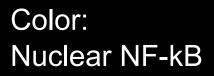
Α

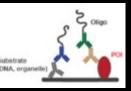
Untreated (UT)

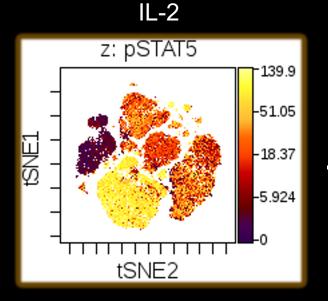


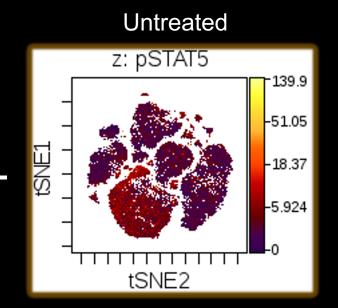
TNFα


SLA applied to mass cytometry requires comparison of colored t-SNE maps

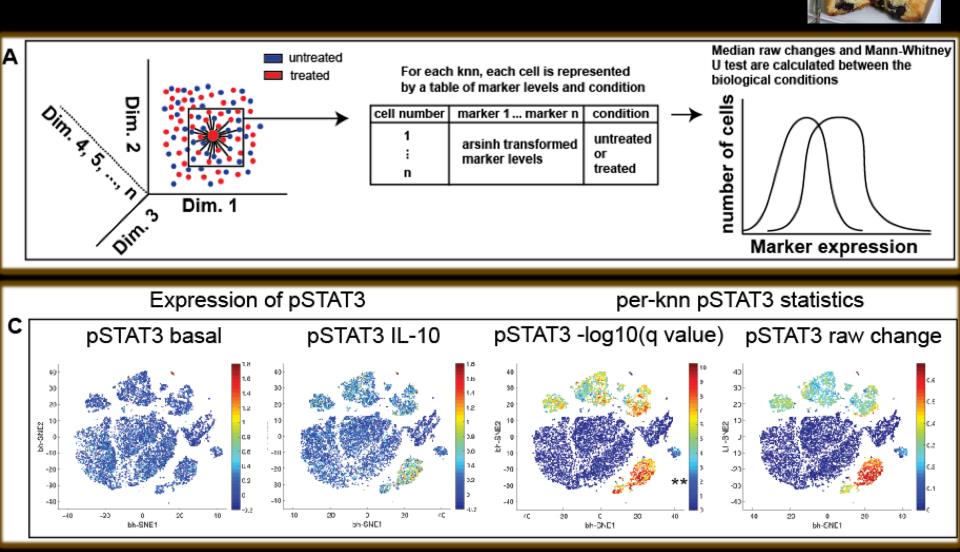

Untreated


TNFα, 30min

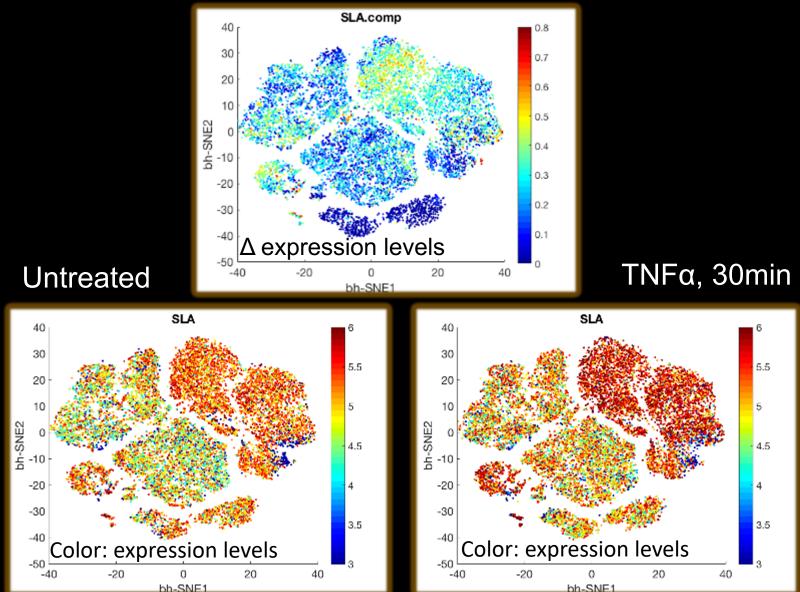

Color: Nuclear NF-kB



One solution: Pixel color value subtraction of t-SNE maps



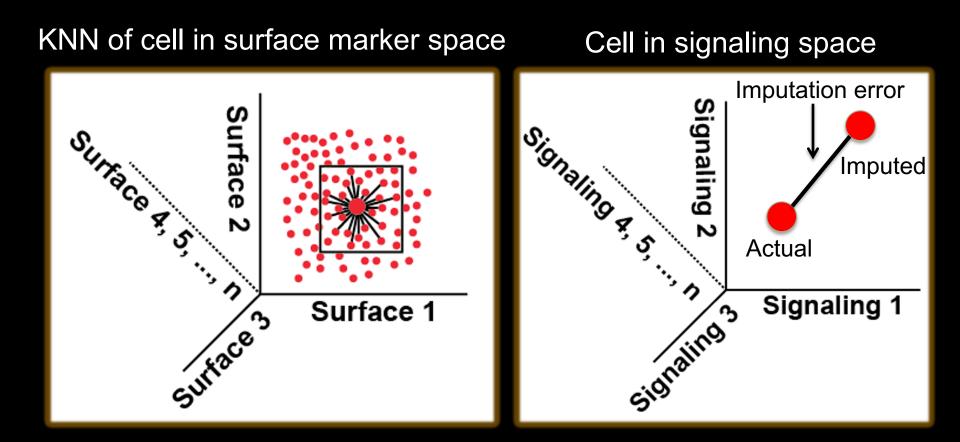
Each pixel = (red 1-255, green 1-255, blue 1-255) subtract image 2 from image 1 pixel by pixel


Yellow = significant increase(yellow – black) Green = moderate increase(yellow – red) Red = small increase(red – black) Black = no difference (any – any)

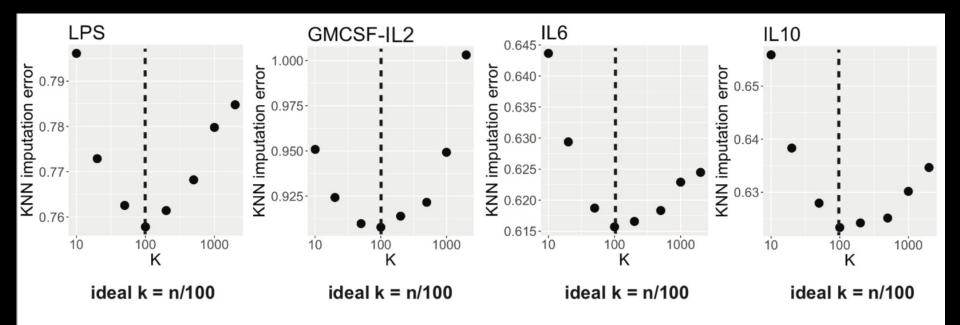
My solution: Smooth Comparisons Over nearest Neighbors (SCONE)

SCONE visualizes nuclear import of NF-kB

The idea of nearest neighbor analysis



Ibn Al-Haytham (Alhazen), 965-1040


- X-Shift, Samusik et al, *Nat. Meth* 2016 (KNN density estimation)
- Phenograph, Levine et al, Cell 2015 (KNN graph clustering)
- One-SENSE, Chang et al, J Immuno 2015 (validation of 1D t-SNE)
- KNN smoothing, Wagnar et al, *BiorXiv* 2017

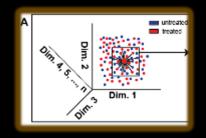
Hence, when sight perceives some visible object, the **faculty of discrimination** immediately **seeks its counterpart among the forms** persisting in the imagination, and **when it finds** some form in the imagination that is like the form of that visible object, **it will recognize** that visible object and will perceive what kind of object it is. (p. 519)

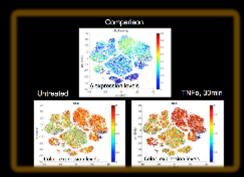
Finding k objectively: optimize imputation of functional markers

Global imputation error across different values of k is convex

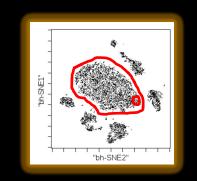
Dataset: Fragiadakis *et al, Anesthesiology* (2015) Donor: healthy human Cell type: whole blood Cell number (n): 10,000

n = number of cells in dataset


Outline

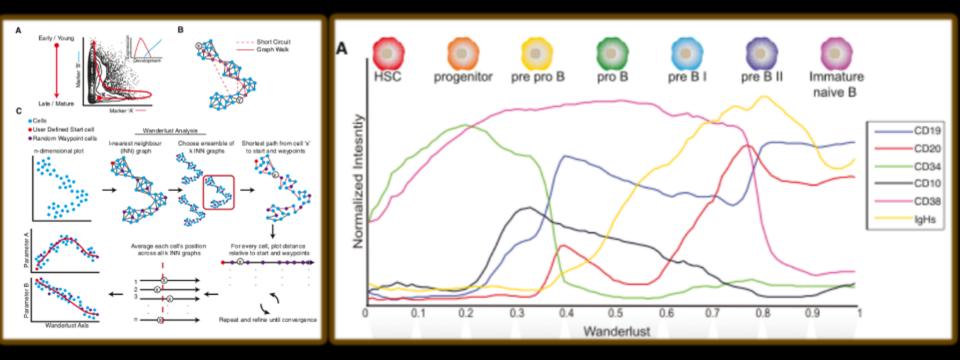

Building per-cell k-nearest neighborhoods in high-D space

Making single-cell comparisons across t-SNE maps


Establishing an evaluation metric for data quality

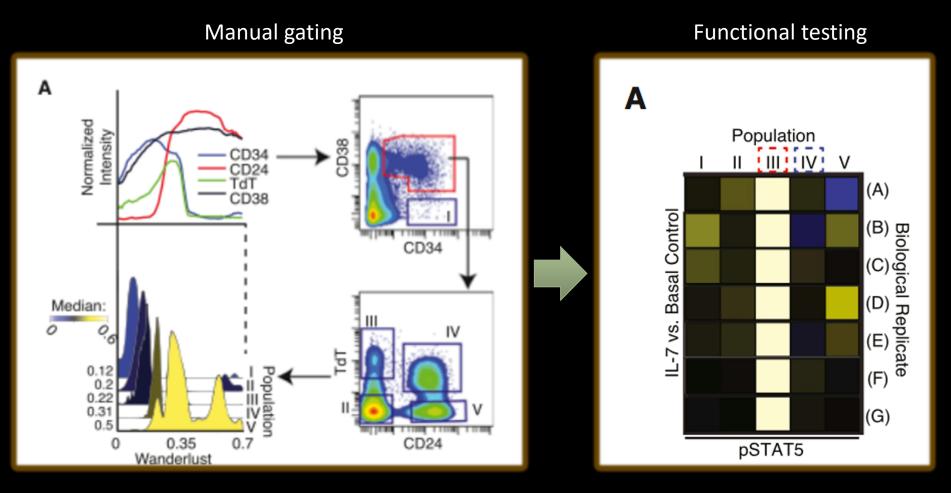
Evaluating the fidelity of lower-dimensional embeddings

Use case: continuous B cell developmental trajectory

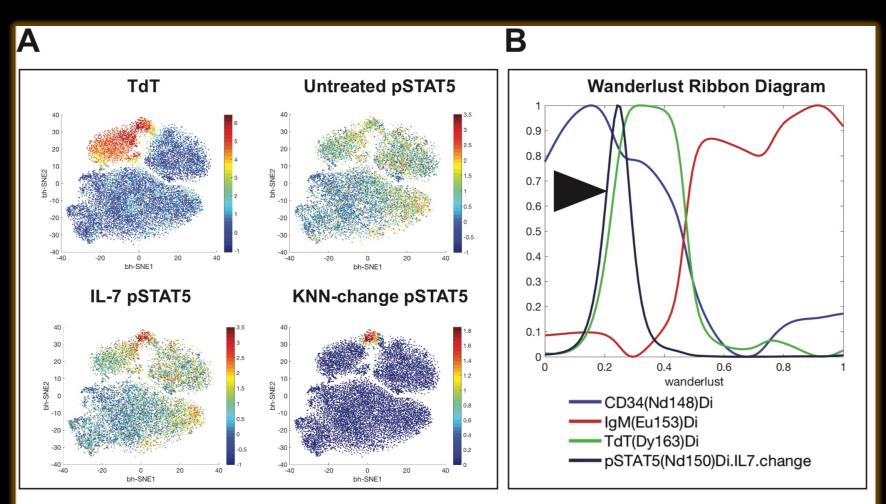


- Cells: B cell precursors manually gated (by expert Kara Davis, DO) from healthy human bone marrow
- Stimulation conditions: untreated, IL-7
- Goals:
 - Visualize an IL-7 responsive subset along the B cell trajectory

Wanderlust finds a developmental trajectory in single cell data


Cell alignment by time

Reveals developmental trajectories

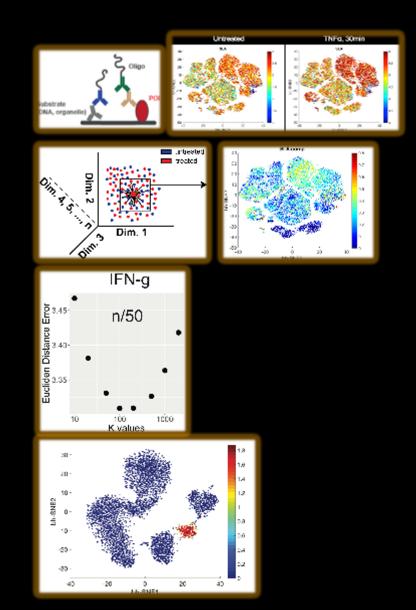


Bendall, Davis, *Cell* 2014

Wanderlust discovered an IL7-pSTAT5 responsive subset

IL7-pSTAT5 responsive subset resides between two "coordination points"

Dataset: Bendall, Davis, Amir *et al, Cell* (2014) Donors: healthy human Cells: B cell precursors gated from bone marrow Cell number: 20,000

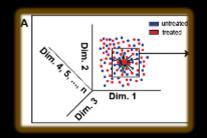

Summary 1

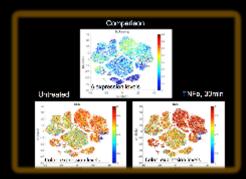
SLA method revealed t-SNE comparison problem

t-SNE comparison problem solved with K-nearest neighbors

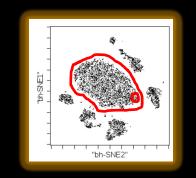
K is selected by minimizing the KNN-imputation error for functional markers

IL-7 responsive population and density estimation shown at single cell level

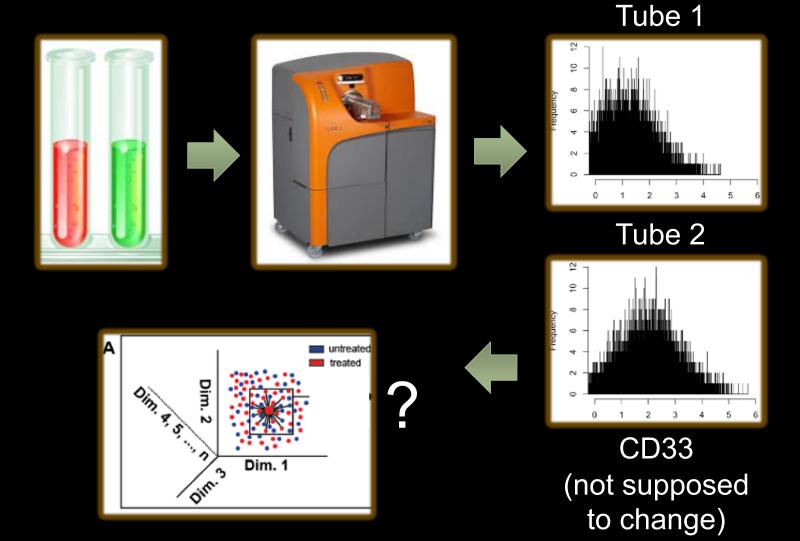

Outline

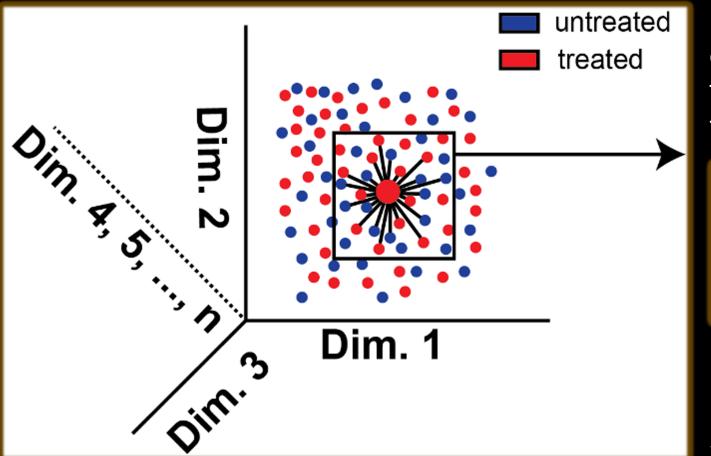

Building per-cell k-nearest neighborhoods in high-D space

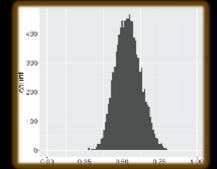
Making single-cell comparisons across t-SNE maps


Establishing an evaluation metric for data quality

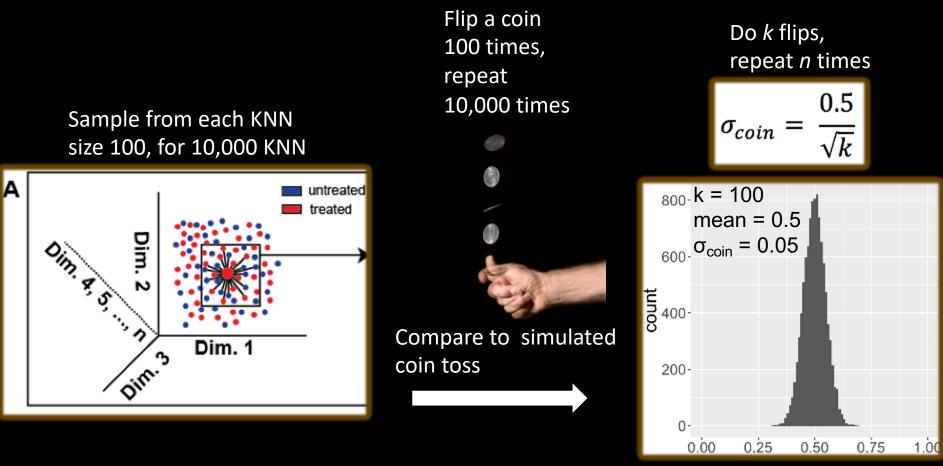
Evaluating the fidelity of lower-dimensional embeddings



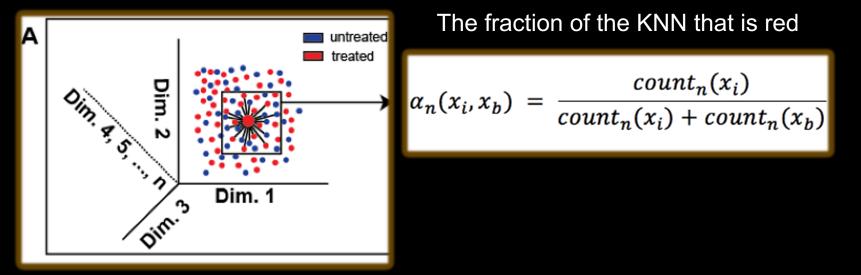



Does population-defining marker space "shift" due to technical artifact between tubes?

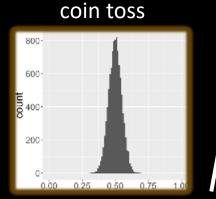
How to test for marker "shift" due to technical artifact? Use KNN.



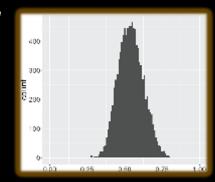
For each KNN calculate the fraction belonging to "red" condition


But what do we benchmark the SD to?

A coin toss distribution represents "perfect" manifold overlap

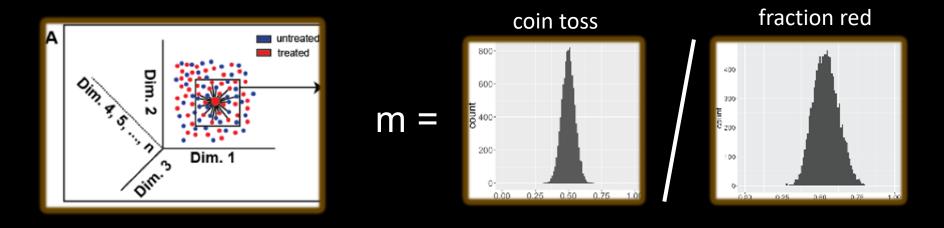

Fraction heads

Evaluation metric: manifold overlap score to quantify global tube-to-tube technical variation

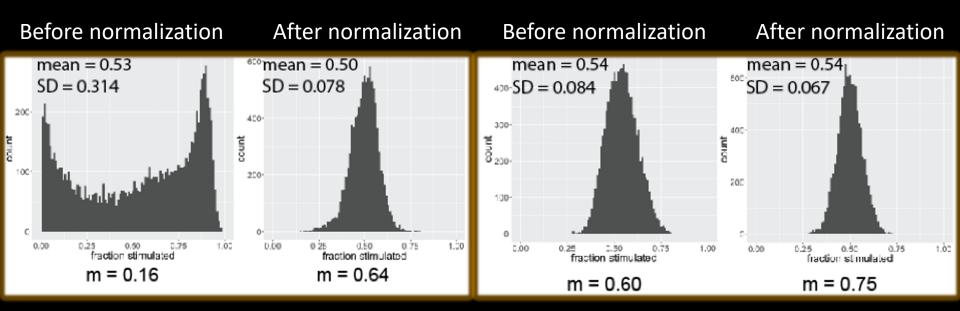


"Fraction red" for all KNN in the dataset, one for each cell

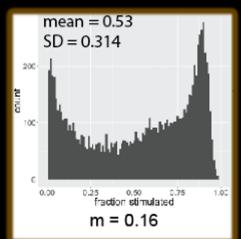
$$\alpha(x_{i}, x_{b}) = \{\alpha_{1}(x_{i}, x_{b}), \alpha_{2}(x_{i}, x_{b}), \alpha_{3}(x_{i}, x_{b}), \alpha_{4}(x_{i}, x_{b}), \dots, \alpha_{n}(x_{i}, x_{b})\}$$


fraction red

SD of fair coin toss distribution, divided by SD of "fraction red" distribution

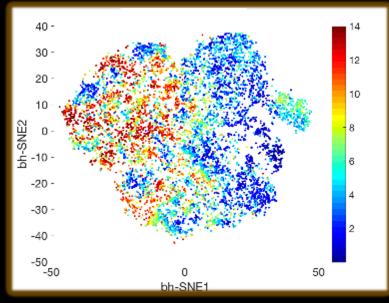

$$m = \frac{\sigma_{coin}}{\sigma(\alpha(x_i, x_b))}$$

Normalization can improve manifold overlap score

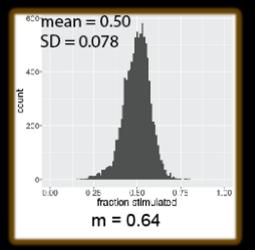


Bodenmiller, Zunder *et al, Nat Biotech* 2012 Untreated vs GM-CSF

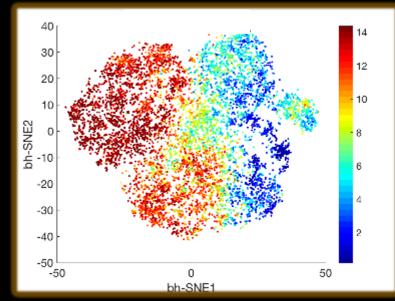
Bendall, Davis *et al*, *Cell* 2014 Untreated vs IL-7

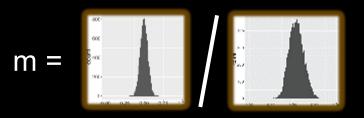


Higher m score: better-defined functional subsets



Before normalization


IFN α - pSTAT5 –log(q value)


After normalization

IFN α - pSTAT5 –log(q value)

Summary 2

- KNN architecture can be used to assess global tubeto-tube technical variation
- Normalization of data brings knn ratios closer to 50%, and does not alter functional information
- Applications: replicate variation, donor-donor variation, optimizing normalization methods...

Other questions that KNN can be used to answer

- Does one's panel contain any redundant markers?
- How much information do you lose by doing a low dimensional embedding (and which is the best?)

Flow-CAP for low-D embeddings

 What is the Shannon entropy of a CyTOF dataset (quantify heterogeneity, esp for cancer)

You should try this out yourself!

Bioconductor: Sconify

<pre>164 #' neighborhoods, which is far more than that of disjoint subsetting, this 165 #' step is important given that there is an increased likelihood that some 166 #' statistically significant differences will occur by chance. 167 #'@param threshold a q value below which the change values will be reported 168 #' @param threshold a q value below which the change values will be reported 169 #' for that cell for that param. If no change is desired, this is set to 1. 170 #' @return inputted p values, adjusted and therefore described as "q values" 171 q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("changes", colnames(cells))] 174 qvalues <- cells[,grep("cond2\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 rest <- cells[,l(colnames(cells) %in% colnames(qvalues))] 177 # rest <- cells[,l(colnames(cells) %in% colnames(qvalues))] 178 avulue correction 179 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 180 avulues <- apply(qvalues, 2, function(i) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 184 names <- colnames(fold) 185 names <- colnames(fold) 186 fold <- lapply(lincol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 199 j) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 #' @title Get the KNW density estimation 199 #' @title Get the KNW density estimation 199 #' @title Get the KNW density estimation 199 #' @title Get the kNW density estimation 197 #' evaiding the lossinges of lower dimensional embeddings </pre>							
<pre>166 #' statistically significant differences will occur by chance. 177 #' @param cells tibble of change values, p values, and fraction condition 2 168 #' @param threshold a q value below which the change values will be reported 169 #' for that cell for that param. If no change is desired, this is set to 1. 170 #' @return inputted p values, adjusted and therefore described as "q values" 171 * q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("changs", colnames(cells))] 174 qvalues <- cells[,grep("qvalues", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 # rest <- cells[,grep("cond2\$", colnames(cells))] 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 197 return(result) 197 } 198 209 #' @title Get the KNW density estimation 200 #' @description Obtain a density estimation derived from the original manifold, 201 *' @description Detain a density estimation derived from the original manifold, 201 *' @description Detain a density estimation derived from the original manifold,</pre>	164	#' neighborhoods, which is far more than that of disjoint subsetting, this					
<pre>167 #' @param cells tibble of change values, p values, and fraction condition 2 168 #' @param threshold a q value below which the change values will be reported 169 #' for that cell for that param. If no change is desired, this is set to 1. 171 # " @return inputted p values, adjusted and therefore described as "q values" 171 * q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("qvalue\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 # rest <- cells[,grep("cond2\$", colnames(cells))] 177 # rest <- cells[, (colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 * if(threshold < 1) { 185 names <- colnames(fold) 186 * fold <- lapply(1:ncol(fold), function(i) { 186 * fold <- lapply(1:ncol(fold), function(i) { 187 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 197 return(result) 197 } 198 201 #</pre>	165	#' step is important given that there is an increased likelihood that some					
<pre>168 #' @param threshold a q value below which the change values will be reported 169 #' for that cell for that param. If no change is desired, this is set to 1. 170 #' @return inputted p values, adjusted and therefore described as "q values" 171 • q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("cond2\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 186 names <- colnames(fold) 186 fold <- lapply(lincol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- fold[[i]] 188 curr <- fold[[i]] 189 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 195 return(result) 197 } 198 199 #' @title Get the KNW density estimation 209 #' @description Obtain a density estimation derived from the original manifold, 201 ************************************</pre>	166	#' statistically significant differences will occur by chance.					
<pre>169 #' for that cell for that param. If no change is desired, this is set to 1. 170 #' @return inputted p values, adjusted and therefore described as "q values" 171 q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("qvalue\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 # rest <- cells[,grep("cond2\$", colnames(cells))] 177 # rest <- cells[,l(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold <1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 19 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 209 #' @title Get the KNW density estimation 200 #' @description Obtain a density estimation derived from the original manifold, 201 #' @description Obtain a density estimation derived from the original manifold, 201 #' @description Obtain a density estimation derived from the original manifold, 201 #' @description Obtain a density estimation derived from the original manifold, 202 #' @description Obtain a density estimation derived from the original manifold, 203 #' @description Obtain a density estimation derived from the original manifold, 204 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from th</pre>	167	#' @param cells tibble of change values, p values, and fraction condition 2					
<pre>170 #' @return inputted p values, adjusted and therefore described as "q values" 171 • q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("qvalue\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 #Bring it all together 194 #Bring it all together 195 result <- bind.cols(qvalues, fold, ratio) 196 return(result) 197 } 198 #' @title Get the KNW density estimaion 209 #' @title Get the KNW density estimation derived from the original manifold, 201 #' @description Obtain a density estimation derived from the original manifold, 202 #' @description Obtain a density estimation derived from the original manifold, 203 #' @description Obtain a density estimation derived from the original manifold, 204 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the original manifold, 205 #' @description Obtain a density estimation derived from the</pre>	168	#' @param threshold a q value below which the change values will be reported					
<pre>171 - q.correction.thresholding <- function(cells, threshold) { 172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("cond2\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 177 # rest <- cells[,l(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- fold[[i]] < threshold, curr, 0) 198 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNW density estimation 200 #' @description Obtain a density estimation derived from the original manifold, </pre>	169						
<pre>172 # Break apart the result 173 fold <- cells[,grep("change\$", colnames(cells))] 174 qvalues <- cells[,grep("qvalue\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 179 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimaion 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	170	#' @return inputted p values, adjusted and therefore described as "q values"					
<pre>fold <- cells[,grep("change\$", colnames(cells))] fold <- cells[,grep("qvalue\$", colnames(cells))] for artio <- cells[,grep("cond2\$", colnames(cells))] for artio <- cells[,grep("cond2\$", colnames(cells))] fold <- cells[, !(colnames(cells) %in% colnames(qvalues))] fold <- cells[, !(colnames(cells) %in% colnames(qvalues)] fold <- cells[, !(colnames(cells) %in% colnames(qvalues)] fold <- cells[, !(colnames(cells) %in% colnames(fold), function(i) { curr <- fold[[i]] colnames(fold) <- names fold <- cells[, !(colnames(fold, .) %>% as.tible() colnames(fold) <- names fold <- bind_cols(qvalues, fold, ratio) return(result) fold <- bind_cols(qvalues, fold, ratio) return(result) fold <- bind_cols(qvalues, fold, ratio) fold <- bind_cols(q</pre>	171 -						
<pre>174 qvalues <- cells[,grep("qvalue\$", colnames(cells))] 175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold, </pre>	172	# Break apart the result					
<pre>175 ratio <- cells[,grep("cond2\$", colnames(cells))] 176 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold, </pre>	173	fold <- cells[,grep("change\$", colnames(cells))]					
<pre>176 177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181 as.tibble 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- fold[[i]] < threshold, curr, 0) 19 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNW density estimation 200 #' @description Obtain a density estimation derived from the original manifold, 201 #' Bring it all manifold, 202 ***********************************</pre>	174	<pre>qvalues <- cells[,grep("qvalue\$", colnames(cells))]</pre>					
<pre>177 # rest <- cells[,!(colnames(cells) %in% colnames(qvalues))] 178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181</pre>	175	ratio <- cells[,grep("cond2\$", colnames(cells))]					
<pre>178 179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181</pre>	176						
<pre>179 # P value correction 180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181</pre>	177	<pre># rest <- cells[,!(colnames(cells) %in% colnames(qvalues))]</pre>					
<pre>180 qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>% 181</pre>	178						
<pre>181 as.tible 182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tible() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	179	# P value correction					
<pre>182 183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	180	<pre>qvalues <- apply(qvalues, 2, function(x) p.adjust(x, method = "BH")) %>%</pre>					
<pre>183 # Thresholding the raw change 184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	181	as.tibble					
<pre>184 if(threshold < 1) { 185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	182						
<pre>185 names <- colnames(fold) 186 fold <- lapply(1:ncol(fold), function(i) { 187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	183	# Thresholding the raw change					
<pre>186 fold <- lapply(1:ncol(fold), function(i) { 187</pre>	184 -	<pre>if(threshold < 1) {</pre>					
<pre>187 curr <- fold[[i]] 188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	185	names <- colnames(fold)					
<pre>188 curr <- ifelse(qvalues[[i]] < threshold, curr, 0) 189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	186 -	<pre>fold <- lapply(1:ncol(fold), function(i) {</pre>					
<pre>189 }) %>% do.call(cbind, .) %>% 190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>	187	curr <- fold[[i]]					
<pre>190 as.tibble() 191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>191 colnames(fold) <- names 192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>192 } 193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>193 194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>194 #Bring it all together 195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>		}					
<pre>195 result <- bind_cols(qvalues, fold, ratio) 196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>196 return(result) 197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>197 } 198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>198 199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>							
<pre>199 #' @title Get the KNN density estimation 200 #' @description Obtain a density estimation derived from the original manifold,</pre>		}					
200 #' @description Obtain a density estimation derived from the original manifold,							
701 # avoiding the lossiness of lower dimensional emheddings							
	201	# avoiaina the lossiness of lower dimensional embeddinas					

www.sconify.org

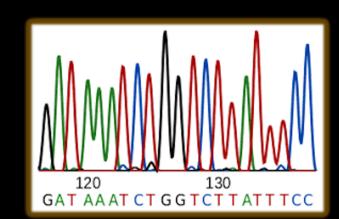
Step 1: Get marker names from fcs file								
browse No file selected								
Le Get full list of markers								
Step 2: Input relevant fcs file, modified marker file produced from step 1								
Choose unstim fcs file								
Browse No file selected								
Choose stim fcs file								
Browse No file selected								
Choose input marker file								
Browse No file selected								
Choose number of cells per file								
5000								
± run scone and download								
•								
What is SCONE?								
Smooth Comparison Over NEighbors (SCONE) is a novel approach to making with blood that is treated with a cytoking, we can make single cell level comp								

github.com/tjburns08

email: burns.tyler@gmail.com

Burns et al, Cytometry 2017(2) (in review)

High parameter single cell analysis is becoming more available (and popular) in biomedicine


High-dim cytometry

High-dim imaging

Single cell sequencing

Acknowledgement

Deutsches Rheuma-Forschungszentrum Ein Institut der Leibniz-Gemeinschaft

Cytodiagnostics, Canada

Ben Pacheco

Miltenyi BioTec

Christian Dose, Susanne Krauthäuser

Silke Stanislawiak	(Sabine Baumgart	Marie Urbicht	
Christina Schäfer			Sarah Gillert	
Heike Hirseland	Tyler Burns	Lisa Budzinski	Edward Rullmann	Julia Schulze

Stanford

Michael Leipold

Holden Maecker, Mark Davis, Garry Fathman

Prof. Dr. Susanne Hartmann

Institut für Immunologie

Dr. Svenja Steinfelder

Institut für Immunologie

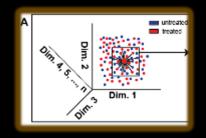
Scailyte

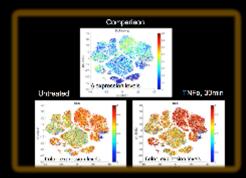
Manfred Claassen, Daniel Sonnleithner

Prof. Dr. Andreas Krause Innere Medizin, Rheumatologie und Klinische Immunologie Prof. Dr. Andreas Michalsen

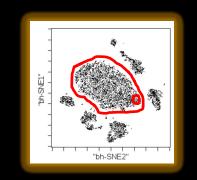
Naturheilkunde

Deutsche Forschungsgemeinschaft

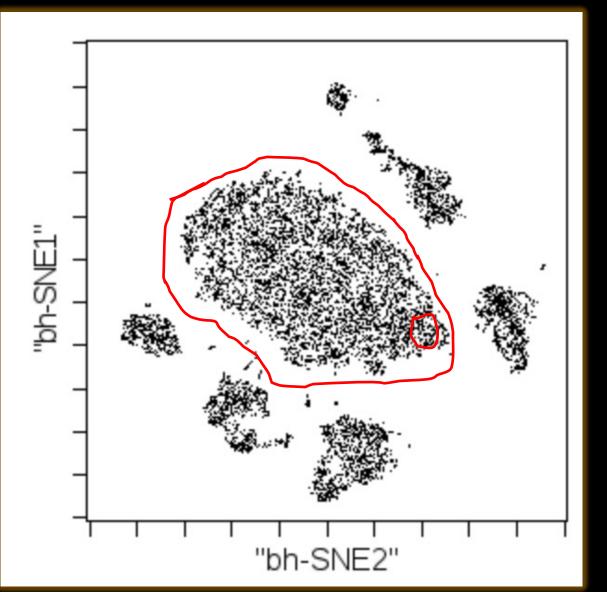

Outline

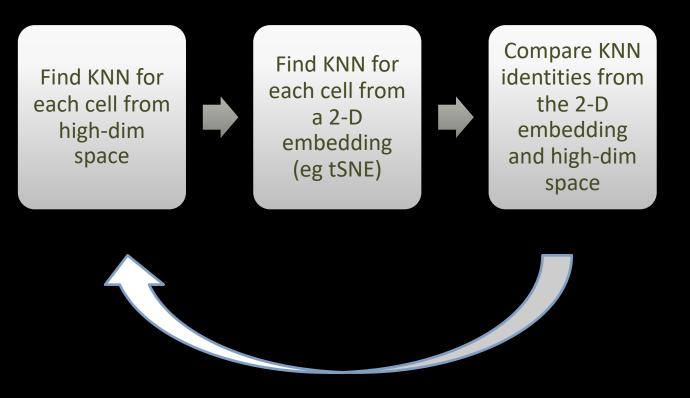

Building per-cell k-nearest neighborhoods in high-D space

Making single-cell comparisons across t-SNE maps


Establishing an evaluation metric for data quality

Evaluating the fidelity of lower-dimensional embeddings

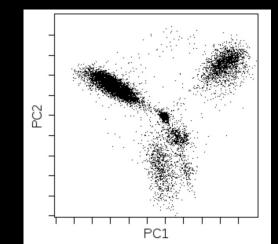



How precise is a t-SNE map? (should we gate/cluster it?)

Gate around an Island?

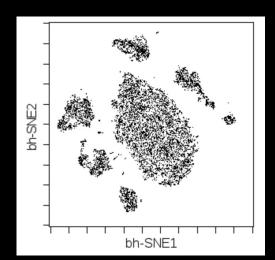
Gate within an Island?

KNN to determine fidelity of lower dimensional embeddings

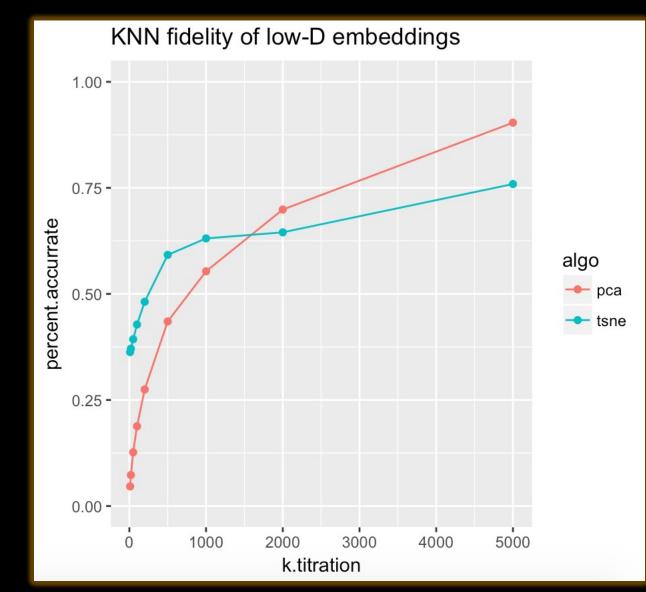


Repeat across a wide range of values for K

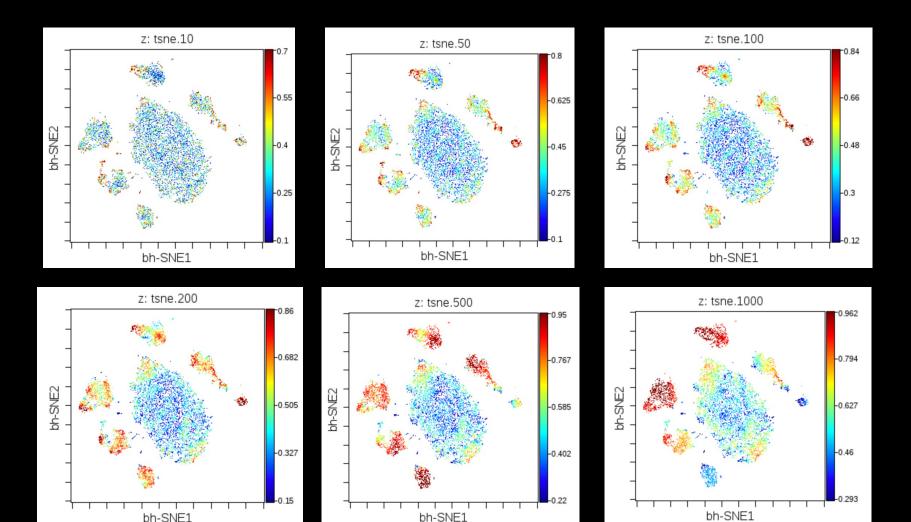
Two low dim embeddings: t-SNE vs PCA


• PCA

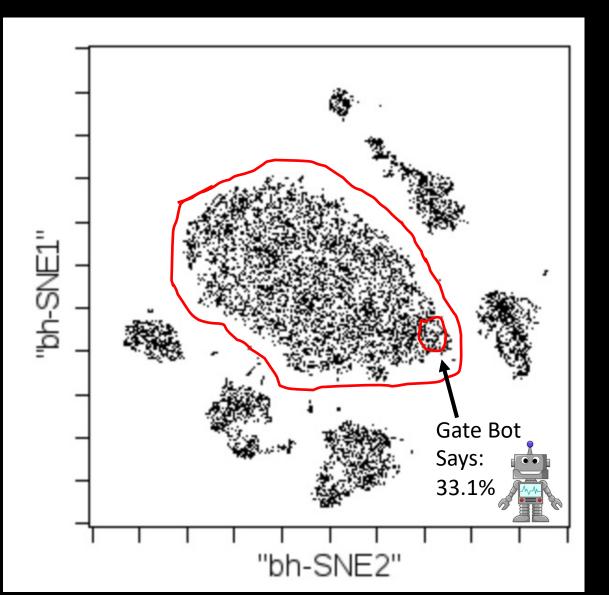
- Seeks to explain the variance of data
- Can only pick up linear structure
- Consistent: same result every time
- Very fast run time


• t-SNE

- Seeks to preserve local structure
- Can pick up non-linear structure
- Inconsistent: different result every time
- Very slow run time

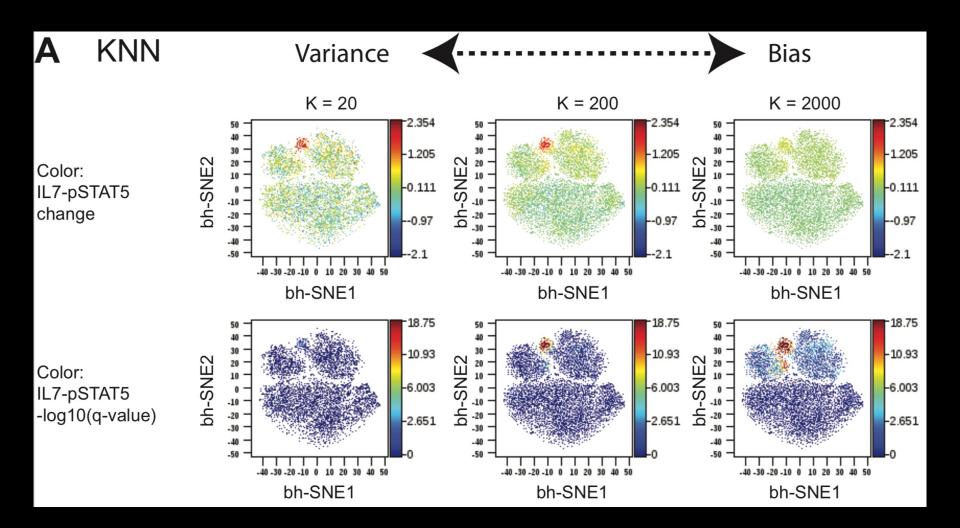

Data from Fragidakis et al Anesthesiology 2015

Global fidelity of lower dimensional embeddings: tSNE vs PCA

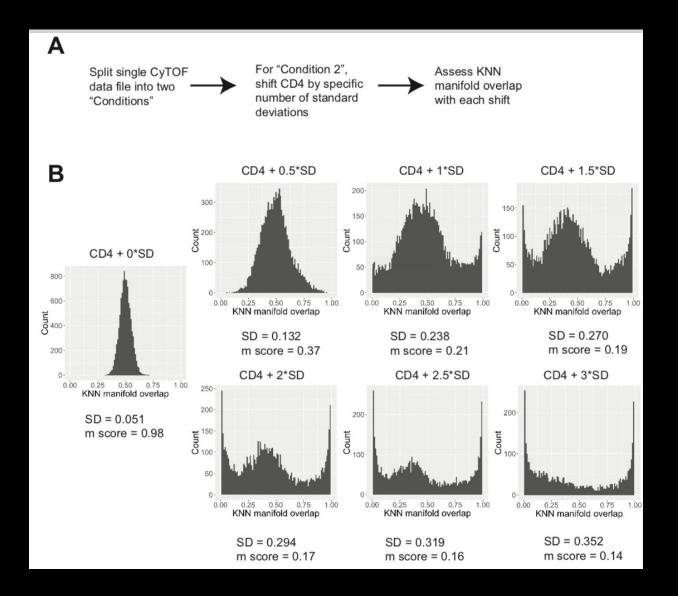


Data: Fragidakis *et al Anesthesiology* 2015 Cells: whole blood Cell number: 10,000

Fidelity of lower dimensional embeddings is region-specific

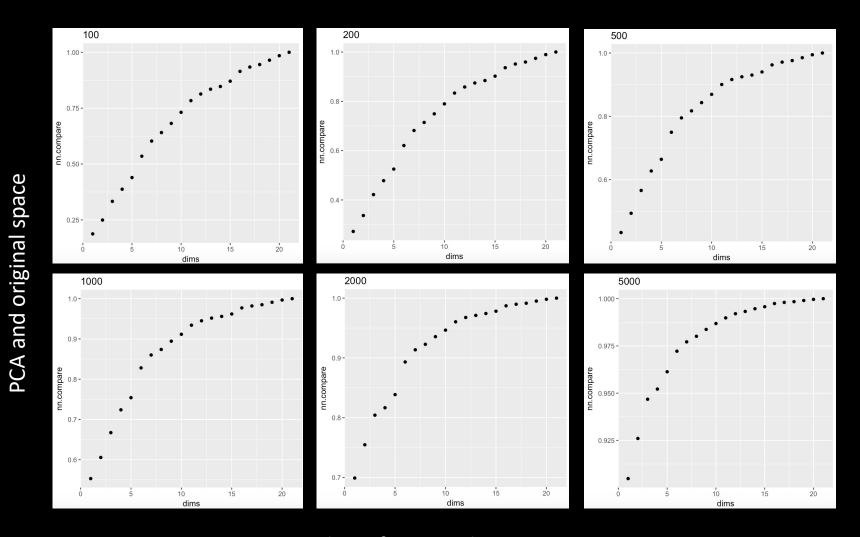


Future direction: toward a tool for people who want to gate their t-SNE maps



Step 1: draw a gate (or cluster) Step 2: computer outputs % accuracy compared to high-d space

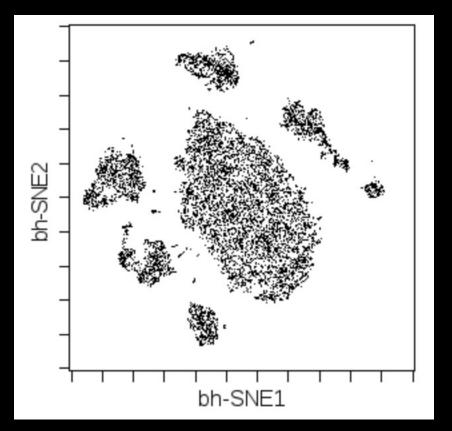
Visual of choice of K: bias-variance tradeoff

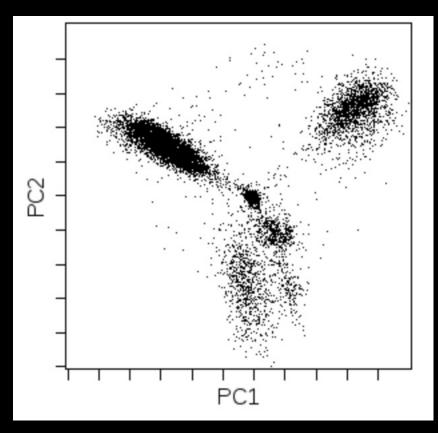

Synthetically altering data: the sensitivity of KNN

Where does KNN fit into a data analysis pipeline

- Initial stages of research:
 - Get an understanding of what your dataset has
 - What markers are relevant
 - How dramatic are the "differences"
 - Does the data need to be normalized and scaled
 - Are there regions where sparsity increases (eg that could point to negative selection)
 - Use this information to determine the appropriate scaled-up analysis:
 - How many "clusters" should we expect
 - Where should we expect (and NOT expect) differences

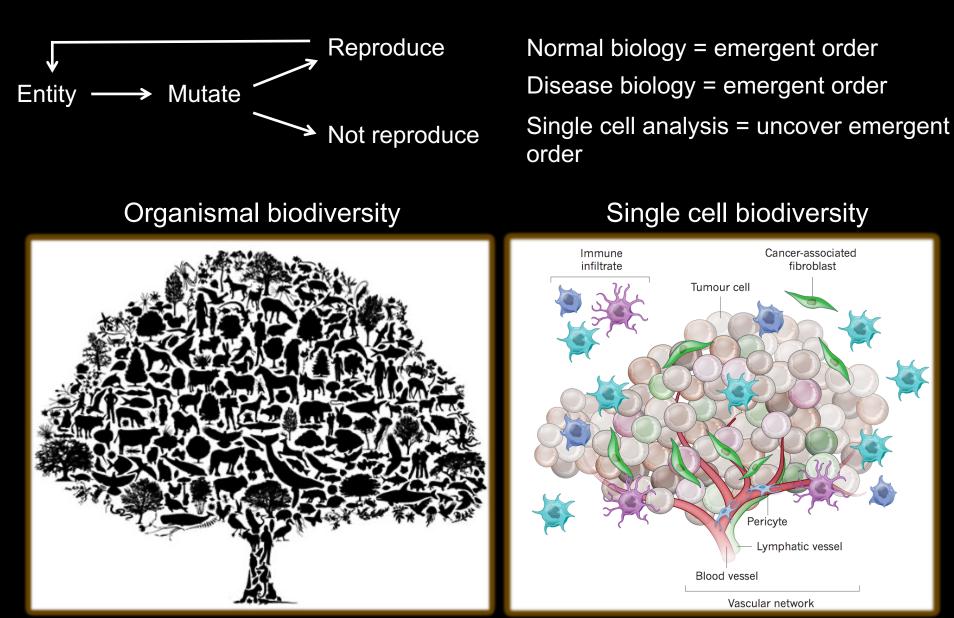
Information loss contains an elbow point


Shared KNN between


Number of principal components to take KNN from

What t-SNE and PCA look like

t-SNE



Fragidakis *et al Anesthesiology* 2015 Cells: whole blood Cell number: 10,000

Single cell analysis: the big picture

Questions?