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Chapter 1: Introduction 
 

1.1 The advent of high parameter high throughput single cell analysis 

 

Given that life as we know it is the product of an increasingly complex genetic 

algorithm iterating for roughly one quarter the age of the universe, it should not be 

surprising that rich biodiversity is observed at nearly every level of analysis from 

organisms within a species to single cells within multicellular life. The unmet need to 

document the latter is rooted not only in our existential pursuit to understand our 

origins, but also to explain and treat various medical conditions that arise and act at 

the single cell level.   

 

This has motivated a variety of single cell technologies to meet these ends. Originally, 

such methods were in two categories, one in which hundreds of thousands of cells 
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could be captured with usually no more than 10 features, and a newer one in which 

very few cells could be captured but with tens of thousands of features. Only recently 

have methods been able to merge these two categories, allowing for 50-100 or more 

features along with hundreds of thousands of cells.  

 

Such methods have required the development of a completely new single cell analysis 

toolkit and vocabulary. It is no longer sufficient, for example, to conclude that a tumor 

is “heterogeneous.” It is fruitful to test the hypothesis that single cells vary in any 

given biological study because of an inherent superstructure of the system.  

 

Here, we focus on mass cytometry, a method that emerged from our lab in 2011 

providing datasets of 100,000+ cells by 45 parameters. Mass cytometry data is clean 

and initial studies have covered well-studied biological systems. This has allowed for 

the development of statistical tools to analyze this particularly novel biological data 

structure. As such, those studying mass cytometry at this time have the responsibility 

to set forth the research and statistical paradigms for the remainder of the emerging 

high-throughput high-parameter single cell analysis methods.  

 

1.2 The niche that mass cytometry fills 

 

1.2.1 The mass cytometry instrument 
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Mass cytometry is a flow cytometry-based technology that uniquely uses antibodies 

conjugated to isotope mass reports (typically of the lanthanide series) rather than 

fluorophores. As a result, the spectral overlap limiting the maximum number of 

parameters of the latter is no longer a problem. The instrument is specifically named 

Cytometry by Time-Of-Flight (CyTOF) (1). In brief, single cells stained with these 

isotope-antibody conjugates are vaporized into ion clouds by inductively coupled 

argon plasma with a temperature comparable to the surface of the sun (7500K). These 

ion clouds, one per cell, are directed into a time-of-flight mass spectrometer. The 

amount of a given protein an antibody was directed against is measured by the amount 

of the specific metal isotopes within the ion cloud by mass-to-charge ratio (m/z). Mass 

cytometry is currently capable of detecting over 45 parameters per cell. The theoretical 

limit of detection is the number of isotopes within the current instrument’s detection 

range of 75m/z to 209m/z, at 134 parameters. CyTOF acquires up to 1000 cells per 

second, with individual samples therefore able to exceed 105 or 106 cells with relative 

ease(2). 

1.2.2 Additional acquisition parameters, aside from antibody count 

 

Given that the instrument does not use fluorescence, scatter properties are not possible 

to obtain. Rather, cells are distinguished from debris using two parameters: a rough 

DNA count feature using iridium-conjugated DNA intercalators, and a “cell length” 

feature is given as a function of the size of each ion cloud(2). These intercalators are 

not sufficiently sensitive to detect stage of the cell cycle as other DNA binding agents 

like DAPI would, but our lab has done additional work engineering cell cycle specific 
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antibody panels(3,4). An additional computational pipeline that includes palladium 

cell “barcoding” channels can assist in distinguishing singlets from doublets 

(5,6). To account for observed subtle fluctuations in the instrument’s performance 

over the course of a long experiment (upwards of several hours of acquisition), bead 

standards are used to normalize input data(7). To distinguish live versus dead cells, a 

one-minute treatment with cisplatin can be used prior to cell processing. The mass 

instrument detects the internalization of platinum accordingly (8). 

 

1.2.3 Antibody panel design 

 

A panel is defined as the set of all antibodies and other detection reagents to be used in 

a mass cytometry experiment. Initial studies have focused on the immune system and 

related cancers. As such, cell surface markers are common input parameters for 

demarcating specific cell subsets. Expression of transcription factors have served a 

similar purpose in more recent studies(9,10). For the immune system in particular, 

there are many pre-existing antibody panels that include surface markers and 

phosphorylated residues of signaling markers. These can be either purchased from 

Fluidigm, or obtained by any mass cytometry publication.  

 

The difficulty in panel design comes when one is studying a completely different 

model system (eg. tissue or tumor). The panel development is iterative. For each 

antibody, one must determine if the antibody reliably detects the macromolecule of 

interest. Not every antibody on the market is rigorously tested, and sometimes the only 
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antibodies available for a specific macromolecule were tested against denatured 

proteins in a western blot. Thus, one needs negative and positive controls (eg 

unstimulated and stimulated cells for a phospho-protein). Furthermore, one may need 

to check for proper subcellular localization using immunofluorescence microscopy. 

We have found, for example, an antibody against Histone H3 with erroneous surface 

staining in human monocytes (Nolan lab, unpublished). When it is found that the 

antibody is detecting what it is supposed to, it must be titrated to determine the 

optimum concentration. Following this step, it is ready for conjugation to an available 

lanthanide channel.  

 

1.2.4 The “phospho-flow” paradigm applied to mass cytometry 

 

Mass cytometry has been able to utilize a paradigm brought forth from our lab’s initial 

“phospho-flow” studies, in which one measures the change in the phosphorylation 

state of a particular signaling protein in response to ex vivo perturbation(11). In the 

simplest experimental scenario, one tube of cells is left untreated and one tube is 

treated with a chemical or environmental agent. These tubes are both stained with the 

same cocktail of antibodies against phospho-proteins expected to change as a result of 

the stimulation. After running the cells through a flow cytometer, the levels of a given 

phospho-protein are compared between the untreated and treated data. In the case of 

mass cytometry, one can use many surface markers to demarcate different cell 

populations, such that this “fold-change” analysis can be performed across each 
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individual population within a complex system (eg. blood). With mass cytometry’s 

ability to deeply subset diverse populations, this phospho-flow paradigm has expanded 

our understanding of how very particular cell subsets respond to the environment.  

 

1.2.5 Expanding what mass cytometry is capable of measuring 

 

Along with expanding the number of features that can be detected, significant effort is 

being spent expanding the types of features that can be observed per cell. Initially, 

features were limited to proteins for which reliable antibodies had been developed. 

These antibodies were further divided into those that bound to a specific protein, and 

those that bound to a post-translationally modified protein (eg. a phosphorylation at a 

specific residue). An initial push in our laboratory was toward the measurement of 

protein-protein interactions, specific nucleic acid sequences, and subcellular 

localization using the mass cytometry platform. A method initially developed for 

immunofluorescence microscopy, the in situ proximity ligation assay (PLA), was able 

to unify these three pursuits(12). This method produces a detectable signal if two 

specifically modified antibodies or transcripts are spatially within 40nm of each other.  

 

Our lab adapted PLA to CyTOF in a collaboration with the method’s inventors, Ola 

Söderberg, Ulf Lendrigan and colleagues at Uppsala University in Sweden. We 

initially used this method to quantify the abundance of specific RNA transcripts 

simultaneously with traditional protein-targeted antibodies through mass 

cytometry(13). Given that mass cytometry with simple antibody staining cannot 



	 7	

provide positional information of a given protein within a cell, we further utilized the 

method to achieve this unmet need, a method we aptly named Subcellular Localization 

Assay (SLA)(14). This allowed us to obtain direct readouts of cell signaling pathway 

activation through measuring levels of nuclear import of a transcription factor rather 

than its change in phosphorylation levels of a specific residue, with the expanded 

throughput and parameters that mass cytometry has to offer as compared to 

immunofluoresence microscopy. Thus, the mass cytometry “phospho-flow” paradigm 

now has a more direct readout of cell signaling activity. Additional efforts are being 

made to use a hybrid of the RNA detection system and SLA to measure epigenetic 

marks of specific DNA sequences (Nolan lab, unpublished). 

1.3 How to analyze high parameter high throughput single cell data 

1.3.1 Initial processing 

The output of a mass cytometry experiment is an fcs file, readable by standard flow 

cytometry analysis platforms including FlowJo, Cytobank, CYT in Matlab, and 

FlowCore in R. Following aforementioned normalization and de-barcoding of these 

fcs files, the data is by convention transformed with the inverse hyperbolic sine 

function using a cofactor of five, as this transformation is able to account for raw 

values that are less than zero(2).  

 

Assuming a given scientist chose input parameters that are individually well studied 

and relevant to the biological questions of interest, a 45-parameter dataset can provide 

both unprecedented systems-level intuition and predictive power for a given biological 
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system. Historically, flow cytometry data has been measured through the use of 

biaxial plots, and manual gating of the cell populations therein. For a simple 4-

parameter flow cytometry experiment, the number of biaxial plots to be analyzed is 6. 

For a 45-parameter mass cytometry experiment, the number of biaxial plots to be 

analyzed is 990. Analyzing 990 biaxial plots is not temporally efficient for a human, 

no matter how well trained. Thus, there initially was and still is an unmet need for 

computational methods to analyze these increasingly complex datasets. We will focus 

on methods that subset cells for the purpose of characterizing the populations that exist 

within a biological system. 

1.3.2 Clustering and cluster visualizations 

One major goal of single cell analysis is to characterize the specific cell subsets that 

exist within a diverse population. For high-parameter datasets, this can be achieved 

computationally through clustering. Clustering is an unsupervised machine learning 

method that categorizes uncategorized data points (in our case, cells) into two or more 

specific groups. Prior to CyTOF, clustering had been used extensively with the 

analysis of microarray data (15,16). There are many different algorithms that do this, 

and an exhaustive comparison for CyTOF analysis is beyond the scope of this 

dissertation. I therefore point the reader toward the following Flow-CAP project, 

which discusses a number of them, their evaluation metrics, and which are more 

appropriate for which datasets (17).  

 

In general, each parameter in the mass cytometry dataset is treated as a spatial 

dimension. Just as 2-parameter data can be treated as coordinates (x, y) denoting 
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where a cell lies on a two dimensional plane, a 45-parameter data can be treated as 45 

coordinates (x, y, z, … n) per cell denoting where a given cell lies in 45 dimensional 

space.  A given clustering algorithm groups cells that are similar to each other, in our 

case, in the original high dimensional space. Of note, clustering can be performed on 

lower dimensional embeddings of the original high-dimensional manifold as well (see 

single cell visualizations)(18). However, there is no current consensus as to when 

lower dimensional embeddings are more appropriate from the original manifold to use 

for clustering analysis, and this is an area of active research. 

 

Once an experimenter has obtained a set of clusters from the data, additional statistical 

analyses can be performed per cluster, with a prominent case being the previously 

described fold change of a phosphoprotein after ex vivo stimulation. The next step is to 

visualize these clusters in the two dimensions allowed for the figures of a publication 

or three dimensions allowed for the human brain. One example of this is the minimum 

spanning tree, which we originally used for mass cytometry analysis in a method 

called SPADE(19). For model systems where the cells therein are expected to be 

structured like a branching tree, like bone marrow, minimum spanning trees provide 

an intuitive “bird’s eye view” of the structure of a given dataset. Additional cluster 

visualization tools utilize force-directed graphs as the final output, removing some of 

the bias a minimum spanning tree would put onto the system. For example, a method 

developed in our lab called Flow-Map is typically used in time-course data, giving 

clusters attractive and repulsive forces based on similarity to each other in high-

dimensional space(10). Another method developed in our lab called Scaffold also uses 
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force-directed graphing but utilizes user-generated “landmark” populations based on 

manual gating. These populations are placed on a two-dimensional map. Here, 

physical forces are applied to the clusters as a function of the similarity to any given 

landmark population and to each other. The end result is a graph that can generate a 

reference map across multiple populations to determine cell subset abundance changes 

(among other things) in an unbiased manner across a multitude of comparisons (9).  

 

Of note, these clusters can be used to make statistical inference. One method out of 

our lab, called Citrus, performs multivariate regression for each cluster within CyTOF 

data to make clinical predictions(20,21). This type of statistical inference has been 

added to the aforementioned Scaffold paradigm as well(22). 

1.3.3 Single-cell visualizations 

A two or three-dimensional embedding of high dimensional data is often done in with 

single cells. This allows the observer to make his or her own conclusions about the 

topology of the data without being subject to the bias introduced by clustering. As 

with clustering, there are many ways to do this.  

 

One computationally efficient dimensionality reduction method developed well over a 

century ago is Principal Components Analysis (PCA)(2). PCA is an eigenvector-based 

multivariate analysis that finds the first n vectors that explain the most variance in the 

data matrix. For visualization, the first two principal components are typically used, 

and cells are plotted as a function of those two vectors. However, PCA assumes a 

linear relationship between all parameters, which is not always the case in biology. 
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Furthermore, the first two principal components often only explain a small percentage 

of the variance of the data matrix, resulting in substantial loss of information. 

Nonetheless, PCA as a visualization strategy is a very quick way to get preliminary 

intuition around one’s data.  

 

A popular method particularly for mass cytometry that emerged more recently is 

called t-distributed stochastic neighborhood embedding (t-SNE) (23). This method 

when applied to mass cytometry was named visualization of t-SNE, or viSNE, in 

collaboration between our lab and the lab of Dana Pe’er (24). t-SNE converts the high 

dimensional single cell data into a probability distribution, and iteratively produces a 

probability distribution in lower dimensional space that minimizes a particular cost 

function. The use of a t distribution has the property of “clumping” the two-

dimensional embedding, which accentuates the existence and separation of cell 

subsets. A side-effect of this property is that the relative cell density in t-SNE space 

does not necessarily recapitulate the relative cell density of high dimensional space, 

though the separation of cell subsets as described on the map is accurate. Unlike PCA, 

t-SNE is computationally expensive, making datasets of greater than 105 cells difficult 

due to runtime. Furthermore, datasets of this size are not as well visually separated 

than smaller datasets on the order of 104 cells (unpublished). Nonetheless, t-SNE 

remains popular among mass cytometry users because of its accessibility and visually 

appealing intuitive readouts.  
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As previously introduced with clustering, force-directed graphs can be used to 

visualize single cell data. Here, single cells rather than clusters are used as the data 

points for which attractive and repulsive forces will be applied as a function of their 

coordinates in high dimensional space. The algorithm typically runs until the cells 

reach stasis in the two dimensional map (or when the user stops it manually). When 

using force-directed graphs on mass cytometry data of mouse bone marrow, the 

algorithm converted upon a branched layout expected from prior knowledge about the 

model system’s structure(25).   

 

For datasets assumed to follow a uniform trajectory over time without branching, an 

algorithm was developed in a collaboration between our lab and the lab of Dana Pe’er 

that finds each cell’s position in the trajectory. This algorithm, called Wanderlust, 

requires user input to define the starting point of the trajectory, and then iteratively 

identifies the shortest path through the dataset’s phenotypic space. These values 

allowed for a clear picture of exactly which markers change along the arrow of 

pseudo-time(26). Marker levels of interest can be plotted as a function of pseudo-time, 

or aforementioned two-dimensional single cell visualizations can be applied and 

colored by Wanderlust value to make inferences about the flow of information (stasis, 

bottlenecks) through pseudo-time.    

1.3.4 Merging clustering and single-cell visualizations with a new paradigm 

 
A fundamental problem with the single cell visualization methods above is that one 

cannot make biological comparisons across concatenated datasets (eg. fold-change of 
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a phospho-protein after stimulation). This is because such comparisons require binning 

of the dataset. However, visualization of such comparisons in a single cell manifold 

embedding, such as t-SNE, would provide an intuitive readout about these 

comparisons that could in turn inform how one should best partition the single cells. 

This would be especially useful for many of the Proximity Ligation Assay-derived 

parameters, wherein there is often signal in baseline state that one wants to compare 

with a stimulated state with an expected increase in signal (eg. nuclear localization of 

NFkB). As such, we developed Smooth Comparison Over Nearest Neighborhoods 

(SCONE), which builds exhaustive bins around each cell consisting of its k-nearest 

neighbors in the original space of markers not expected to change between conditions  

(typically surface markers). From here, one can represent the value of each cell in the 

dataset as the biological comparison of interest made between its k-nearest neighbors 

in a concatenated dataset. This can range from statistical tests to cell-abundance 

changes between multiple biological conditions. These values can then be encoded as 

colors on a t-SNE map or other dimension-reduction map, allowing one to visualize 

both continuous and discrete chagnes across biological conditions. The computational 

section of this dissertation revolves around re-analysis of several landmark mass 

cytometry datasets within this paradigm.  

 

1.4 Emerging methods and the future of high parameter high-

throughput single cell analysis 
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Two emerging single cell method categories are on the heels of mass cytometry to 

provide similar throughput and parameters. The first category is imaging, wherein two 

methods, MIBI(27) and CODEX (Nolan lab, unpublished), allow immunofluorescence 

and immunohistochemistry data with parameters exceeding 50-100. The second 

category is single-cell sequencing, where only recently the number of cells able to be 

sequenced at any given time has exceeded 10,000, which makes mass cytometry 

analysis pipelines amenable to this type of data(28). 

 

With respect to imaging, there is a rich abundance of spatial features that mass 

cytometry and single cell sequencing cannot provide, such as categorizing the physical 

neighbors of a given cell (Nolan lab, unpublished). If these new features can be 

represented as numerical features on the data matrix (and our lab has found that they 

are), then these technologies can utilize mass cytometry pipelines established for 

clustering (eg. SPADE, Scaffold, Citrus) and single-cell visualizations (eg. t-SNE, 

SCONE).  

 

Single cell sequencing has the unique challenge of having a data matrix with 1-2 x 104 

features rather than the 30-100 used for mass cytometry, MIBI, and CODEX. 

Increasing dimensionality leads to increased sparsity of the dataset, often referred to as 

the “curse of dimensionality”. Here, t-SNE has become popular for visualizing such 

datasets. However, one must perform t-SNE on the first ~50 principal components 

rather than the original high-dimensional manifold to combat the curse of 

dimensionality. As such, the final visualizations are somewhat harder to interpret than 
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the t-SNE output from a mass cytometry dataset. Nonetheless, single cell sequencing 

will only further improve both in throughput and quality, and it would be of great 

benefit to adapt established mass cytometry analyses to this type of data.  As such, 

rigorous study needs to be done regarding dimensionality reduction methods to 

optimally preserve the information content of the original manifold for this specific 

data type. These methods will likely become relevant to mass cytometry and the high 

parameter imaging methods as the respective maximum number of parameters per cell 

continues to increase. 

 

These new methods, along with mass cytometry, will allow researchers to tackle 

fundamental questions about the diversity of both development and disease. Given the 

similarity of the data structures across these platforms, we expect them to benefit from 

cross-pollination within these computational analysis paradigms. 
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Chapter 2: High-throughput precision measurement of 

subcellular localization in single cells 

 

2.1 Abstract 

 

To quantify visual and spatial information in single cells with a throughput of 

thousands of cells per second, we developed SLA (Subcellular Localization Assay). 

This adaptation of Proximity Ligation Assay expands the capabilities of flow 

cytometry to include data relating to localization of proteins to and within organelles. 

We used SLA to detect the nuclear import of transcription factors across cell subsets 

in complex samples. We further measured intranuclear re-localization of target 

proteins across the cell cycle and upon DNA damage induction. SLA combines 

multiple single-cell methods to bring about a new dimension of inquiry and analysis in 

complex cell populations. 
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2.2 Introduction 

 

Cells can efficiently respond to a dynamic environment by re-localizing proteins both 

between and within intracellular compartments. Thus, quantifying localization of 

proteins to specific intracellular structures is fundamental for understanding cell 

behavior, both in normal and diseased conditions.  

 

Immunofluorescence microscopy (IFM) is often used for obtaining such information.  

With IFM one can visually estimate co-localization of a protein with intracellular 

structures provided there exist antibodies or dyes for each, though throughput is 

typically low. In addition, imaging flow cytometry(29) has been a useful addition to 

the field with a much higher throughput than IFM (up to 5000 cells per second), but 

currently limited availability.  

 

It would be optimal to obtain such information with traditional flow cytometry, a well-

entrenched technology with throughput of more than 10,000 cells per second, and a 

much wider availability in both hospitals and laboratories (30). Within flow 

cytometry, one can use phosphorylation of specific proteins as an approximation for 

their activation (e.g. phosphorylation of a transcription factor associated with nuclear 

localization), provided one has an antibody for a phosphorylation site sufficiently 

studied to make such an assumption (11). Thus, a flow cytometric readout of a single 

phosphorylation site of a specific protein may only provide limited information about 

its varied activation states, and is therefore not always a suitable proxy for 
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localization. Moreover, protein localization to “protein neighborhoods” within cells is 

important.  The presence of two or more proteins in a given locale is often an indicator 

of a series of mechanistically determined events whose consummation is the goal of 

the machine being built.   

 

Other than nanoscale imaging, proxies have been developed to indicate locale.  One 

approach used for over 30 years is fluorescence resonance energy transfer, either with 

chemical or genetically encoded fluorophores (31). This requires previous tagging of 

the molecules in question and might interfere with their supposed functions.  Another 

method involves “splitting” of enzymatic functions into separate sub-proteins (32). 

Again, this involves most often the creation of genetic fusion events.  In each of these 

cases the co-localization of proteins in the cell creates an “event” that can thus be read.  

Finally, a method recently described allows for rough approximation of protein 

location within a given cell by analyzing pulse width and height of a fluorescently 

labeled protein with flow cytometry(33). However, one may want a quantitative 

readout based not on location within a cell or phosphorylation, but rather from 

molecularly tagging these said events at specific subcellular structures of interest by 

relative proximity without creating genetic fusion events.    

 

Here, we utilized the Proximity Ligation Assay(12) method to measure proximal co-

localization of specific proteins to specific subcellular compartments with flow 

cytometry. This adaptation, herein termed Subcellular Localization Assay (SLA), is 

extensible to IFM, CyTOF, MIBI, and other detection systems. SLA quantifies 
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localization of any given protein, for which there exists a representative antibody, and 

a second molecular tag for the subcellular structure with which the first protein 

interacts.  The system is compatible with simultaneous detection of additional cell 

surface or intracellular markers in primary cells. Importantly, the method does not 

require instrument modifications or new analysis software.  

 

We first measured nuclear import with flow cytometry by detecting proximity of 

antibodies against transcription factors to a previously validated antibody against 

double-stranded DNA(27). We next measured DNA repair by re-localization of 

nuclear proteins to sites of DNA damage. This was achieved by detecting proximity of 

antibodies against DNA repair protein BRCA1 to antibodies against DNA damage 

marker γH2AX. Changes in localization were quantified by the increase or decrease in 

the observed SLA signal. Here, we performed SLA simultaneously with a DAPI stain 

for cell cycle analysis. Combining quantitative and high throughput measurements of 

subcellular localization with protein function in primary cells provide opportunities for 

understanding basic cellular mechanisms with implications in health and disease. 

 

2.2 Methods and Materials 

 

2.2.1 Cell lines and samples 

All cell lines described below were of human origin. Non-adherent cell lines (U-937, 

THP-1, Jurkat) were purchased from ATCC (Manassas, VA, United States). U-937 
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and THP-1 cell lines are monocytic, and the Jurkat cell line is T-lymphocytic.  These 

cell lines were cultured in Dulbecco’s RPMI-1640 (Life Technologies, Carlsbad, CA, 

United States), with 10% FBS (Thermo Fisher Scientific, Waltham, MA, United 

States), 1% Penicillin/Streptomycin (Life Technologies) and 1% Glutamine (Life 

Technologies) added, maintaining a density on average between 500K and 1M cells 

per mL. The TYK-nu cell line was derived from an ovary with undifferentiated 

carcinoma. It was obtained from GCRB (Glasgow, Scotland) for our use. TYK-nu 

cells were cultured in Eagle’s Minimum Essential Medium (ATCC) with 10% FBS 

and 1% Penicillin/Streptomycin added. All aforementioned cell lines were cultured at 

37°C in a 5% CO2 atmosphere.  

 

Human peripheral blood was obtained from the Stanford University Blood center from 

anonymous healthy human donors. Collection procedure followed a Stanford 

University Institutional Review Board-approved protocol. SLA experiments used 

peripheral blood mononuclear cells (PBMCs) isolated using Ficoll Plaque Plus 

(Thermo Fisher Scientific). For these experiments, PBMCs were used fresh.  

 

2.2.2 Cell stimulation, treatment, and processing 

U937 and THP-1 human monocytic cells were stimulated with 10 ng/mL recombinant 

human TNFα (R&D Systems, Minneapolis, MN, United States) for 15 minutes, and 

Jurkat cells as well as human PBMCs were stimulated with 250 nM PMA (Sigma-

Aldrich) and 1 µM ionomycin (Sigma-Aldrich, St. Louis, MO, United States) for 60 

minutes in complete RPMI. PBMCs were stimulated with 50 ng/mL TNFα or 5 µg/mL 
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ultrapure LPS (InvivoGen, San Diego, CA, United States) for times specified in 

complete RPMI. Cells were incubated gentle shaking at 37 °C. TYK-nu cells were 

treated with 10Gy of γ radiation using Cesium 137 at a dose of 8gy/min. Following 

irradiation, cells were incubated at 37 degrees for 6 hours before they were processed.  

 

Following pathway stimulation treatments described above, cell lines were fixed at a 

density of 1 x 106 cells/mL, and PBMCs were fixed at a density of 5 x 106 cells/mL. 

Fixation occurred in 1.6% paraformaldehyde (Electron Microscopy Services, Hatfield, 

PA, United States) for 10 minutes at room temperature. Of note, all paraformaldehyde 

solutions described in this manuscript came from 16% stock samples, diluted into 

relevant cell culture media. Following fixation, cells were permeabilized in 100% 

methanol (Thermo Fischer Scientific) on ice for 15 minutes. These fixation and 

permeabilization conditions are a standard for our lab, as previously described (2).  

 

For DNA damage experiments, irradiated cells were pre-extracted with 0.5% NP-40 

(Abcam, Cambridge, England) in PBS (Life Technologies) for 5 minutes on ice, and 

fixed in 4% paraformaldehyde (Electron Microscopy Services) for an additional 20 

minutes at room temperature as described previously (34). The higher percentage of 

paraformaldehyde was used to counteract the increase in cell loss observed in pre-

extracted cells during each wash step. Pre-extracted cells were not permeabilized with 

methanol.  
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2.2.3 Preparation of proximity probes 

Donkey anti-mouse and anti-rabbit secondary antibodies (Jackson Immunoresearch 

Labs, West Grove, PA, United States) were conjugated to a heterobifunctional sulfo-

SMCC linker (Thermo Fischer Scientific). The linker was added at a molar excess of 

25 to 1 with an antibody concentration of 1.3 mg/mL. Samples were incubated at room 

temperature for 45 minutes. Unconjugated SMCC linker was removed using 50-kDa 

Centricon filters (Thermo Fisher Scientific). Samples were filtered twice with addition 

of PBS after a spin at 12,000 g for 10 minutes. Samples were resuspended in 50 µL in 

PBS.  

 

Oligonucleotides with a C6-thol modifier conjugated on the 5’ end (Stanford Protein 

and Nucleic Acid facility, Stanford, CA, United States) were conjugated to the 

respective antibody-SMCC linker conjugates. In parallel to the antibody-SMCC 

incubation step, oligonucleotides were deprotected using 5 mM TCEP (Thermo 

Fischer Scientific) in 0.5X PBS for 20 minutes at 37 °C. TCEP was removed by 

precipitation from 0.3M sodium acetate and 70% ethanol. Oligonucleotides were 

resuspended in PBS with 1 M NaCl. Oligonucleotides were added at a 5 to 1 molar 

excess to 1.3 mg/mL SMCC-conjugated antibody and incubated overnight at 4 °C. 

Samples were then purified through Centricon filters as described above. PBS-based 

antibody stabilizer (Boca Scientific, Boca Raton, FL, United States) was added until 

the antibody concentration was approximately 1 mg/mL. In total, this procedure takes 

approximately one and a half hours of physical labor on day one, an overnight 

incubation, and another 30 minutes for the purification step on day two. Efficacy of 
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antibody-oligonucleotide conjugation was evaluated by SDS-PAGE using Simply 

Blue Safe Stain (Life Technologies) for protein detection and SYBR-Gold (Life 

Technologies) for DNA detection. Each conjugate was further evaluated by SLA for 

the dsDNA:histone H3 interaction over a range of concentrations to optimize signal-

to-noise ratio. 

 

2.2.4 SLA protocol 

For all experiments with PBMCs, cells were barcoded according to treatment 

condition with different concentrations of Pacific Orange NHS fluorophores (Thermo 

Fischer Scientific) as previously described (35) . Cells were then placed into PCR 

tubes for antibody staining and subsequent steps at a density of 1 million cells per 

100µL. The following primary antibodies were used in this study: CD45 (Biolegend, 

clone H130, San Diego, CA, United States) 2 µg/mL, dsDNA (Abcam, clone 35I9) 0.5 

µg/mL, NF-κB (Abcam, polyclonal) 2 µg/mL, histone H3 (Abcam, polyclonal), 2 

µg/mL, NFAT (Cell Signaling Technology, Danvers, MA, United States), 1:200 

dilution – mass not specified, Cytochrome C (Cell Signaling Technology), 1:500 – 

mass not specified, COXIV (Cell Signaling Technology), 1:500 – mass not specified, 

H2AX, pSer139 (Millipore, clone JBW301, Darmstadt, Germany), BRCA1 (Santa 

Cruz Biotechnology, clone C20, Dallas, TX, United States). Barcoded samples were 

incubated with the antibodies at 4°C overnight (approximately 15 hours) in PBS with 

5mg/mL BSA (Santa Cruz Biotechnology) and 0.02% sodium azide (Sigma-Aldrich). 

Cells were subsequently washed three times with PBS containing 5mg/mL BSA and 

0.02% sodium azide, and secondary antibodies conjugated to proximity probes were 
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added. The master mix contained 100 µg/mL sheared salmon sperm DNA (Life 

Technologies) and 3 µg/mL proximity probes (anti-mouse and anti-rabbit) in the 

aforementioned wash buffer. Cells were incubated for 1 hour at room temperature on 

an inverter. For subsequent steps to the end, cells were washed in PBS with 0.1% 

Tween. Following secondary antibody incubation, 100 nM backbone and 100 nM 

insert oligonucleotides with 10 µg/mL of salmon sperm DNA were added in PBS with 

0.1% tween. Cells were incubated for 30 minutes at 37 °C. Next, the oligonucleotides 

were ligated in 1x ligation buffer (Thermo Fisher Scientific), T4 DNA Ligase 10 

U/mL, and 10 µg/mL sheared salmon sperm DNA. Following this, rolling circle 

amplification of the circularized oligonucleotide product was performed in 1x phi29 

polymerase buffer (Thermo Fisher Scientific), 125 U/mL phi29 polymerase (Thermo 

Fischer Scientific), and 250 µM each dNTP (Thermo Fisher Scientific). Samples were 

incubated for 90 minutes at 37°C. We determined that longer amplification times (as 

long as overnight) could be used for interactions that produce low signals, After three 

washes with PBST, detection oligonucleotides labeled with Alexa 647 were added for 

a final concentration of 200 nM (Olink Biosciences, Uppsala, Sweden). It was also 

determined that this surface/intracellular staining step could occur following the 

addition of the secondary oligonucleotide conjugated probes in the beginning of the 

procedure, but the strength of signal was no different (data not shown), and the 

simultaneous staining with the detection reagents saved time. For experiments 

containing PBMCs, the following fluorescently conjugated antibodies were added for 

additional surface and intracellular staining: IκBα Alexa 488 (Cell Signaling 

Technology, clone L35A5), CD3 PE (BD Biosciences, Clone HIT3A, San Jose, CA, 
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United States), CD7 Alexa 700 (BD Biosciences, Clone M-T701). Samples were 

incubated at 37 °C for 30 minutes. For DNA damage experiments, one subsequent 

step was added, wherein cells were incubated with 0.25ug/mL DAPI (Sigma-Aldrich) 

for 30min. In total, the SLA procedure described above takes approximately one hour 

for cell prep and primary antibody staining on day one, followed by an overnight 

incubation, followed by six hours of on the second day for the remaining steps and 

flow cytometry.   

 

2.2.5 Data acquisition and analysis 

Following SLA, cells were analyzed on an LSRII flow cytometer (BD Biosciences), 

equipped with 405, 488, and 633nm lasers. All flow cytometry data was subsequently 

analyzed using Cytobank software (Mountain View, CA, United States). For PBMCs, 

compensation was performed using Protein A/G bead standards for all antibodies 

used. For Pacific Orange dye, a mixture PBMCs with and without the dye was used. A 

compensation matrix was made within Cytobank. All images were acquired with a 

Marianas Spinning Disk Confocal microscope (Zeiss, Oberkochen, Germany), using 

the aforementioned primary antibody clones followed by incubation with fluorescent 

secondary antibodies conjugated to Alexa-fluor 488 and Alexa-fluor 647 fluorophores 

(Invitrogen, Carlsbad, CA, United States) for 30 minutes at room temperature. 

Following this, cells were counterstained with Hoechst (Life Technologies) for 5 

minutes for cell nuclei. Cell samples (10 µL) were pipetted into wells of a Lab Tek 

chamber slide (Thermo Fischer Scientific), incubated in the dark for 10 minutes to 

allow cells to sink to the bottom of the slide, and imaged using the SlideBook 6.0 
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software (3i, Denver, CO, United States). Images were further processed using ImageJ 

software (National Institutes of Health, Bathesda, MD, United States). Bar plots were 

constructed using the ggplot2 R package.  

 

2.2.6 Statistics 

Statistical tests were performed using the stats R package. Specifically, the Welch 

Two Sample t-test was used, and all tests were two-tailed.  For time-course 

experiments shown in Figure 3, data were transformed by the inverse hyperbolic sine 

(arcsinh), and therefore compared in arcsinh space. This is similar to a log 

transformation done on flow cytometry data to make relationships between expression 

levels and biological conditions more clear. The arcsinh transformation and its 

comparison to log transformation is described in previous work from our lab (2), and 

additional work comparing different data transformations commonly used in flow 

cytometry (36).  

 

2.3 Results 

2.3.1 The SLA approach 

SLA uses the Proximity Ligation Assay(12,37),(38),  

(13,39-41) to bring protein subcellular localization, normally accounted for by visual 

and spatial observation, to the traditionally non-visual flow cytometer. Proximity 

ligation assays traditionally measure protein-protein interactions via antibodies against 

the respective proteins of interest. Here, this method is adapted such that one antibody 
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is against an abundant macromolecule marking an organelle or cell structure of 

interest.  These antibodies are bound by oligonucleotide-conjugated secondary 

antibodies used for proximity detection (Figure 1A, left panel). If the two secondary 

antibodies are within 40 nanometers of each other(12), the reaction proceeds and the 

product can be measured either by microscopy or flow cytometry with fluorophore-

conjugated detection oligonucleotides (Figure 1A, middle and right panel).  

 

2.3.2 Measuring transcription factor localization to organelles  

In initial experiments, SLA was used to measure the nuclear import, and presumed 

DNA binding, of the p65/RelA subunit of transcription factor NF-κB by quantifying 

its interaction with an antibody against double-stranded DNA (dsDNA) used 

previously(27). In these experiments, proximity probes for the interaction between 

CD45 and Histone H3 (Figure S1A) (not expected to interact), and proximity probes 

for the expected interaction between dsDNA and Histone H3 (Figure 2) were used as 

controls, where the signal was not expected to change between untreated and treated 

conditions. Nuclear import of p65/RelA (which will be referred to as NF-κB) was 

induced by treatment with NF-κB pathway activator tumor necrosis factor alpha 

(TNFα) (Figure 2B, Figure S1A). SLA detected an increase in nuclear NF-κB for both 

cell lines and gated monocytes from human peripheral blood mononuclear cells 

(PBMCs), consistent with what was observed by IFM of traditional fluorescent 

antibody staining (Figure 2A).  
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Additionally, SLA was used to measure nuclear import of transcription factor NFAT 

in the Jurkat T cell line upon combined treatment of NFAT pathway activators 

phorbol-12-myristate-13-acetate (PMA) and Ionomycin (Figure S2). Here, treatment 

with PMA and Ionomycin led to a strong increase in nuclear NFAT SLA signal both 

in Jurkat cell lines and lymphocytes gated out of healthy human PBMCs. Of note, 

CD3+ T cells appeared to have a unanimous increase in SLA signal, suggesting that 

the nuclear NFAT translocation behavior is sufficiently similar among the numerous T 

cell subsets therein that they cannot be distinguished by these conditions. On the 

contrary, two populations were observed in CD3- lymphocytes after PMA and 

Ionomycin, suggesting diversity of nuclear NFAT translocation behavior among the 

remaining cell subsets (eg. B cells, Natural Killer cells) under these conditions.   

 

To test the efficacy of SLA on other macromolecular structures, mitochondrial 

localization of cytochrome C was measured using a pair of antibodies against 

cytochrome C and mitochondrial protein COXIV (Figure 1B, Figure S1B). The NF-

κB interaction with Cytochrome C was used as a negative control. Here, a small subset 

of cells had an increased SLA signal for this interaction (though still very low). Given 

the weakness of signal, this is likely due to experimental background noise, but it 

could also be due to NF-κB protein existing in or near the mitochondria of these cells, 

which has been reported previously (42). 

 

IFM with fluorescent staining of the same primary antibodies validated the results for 

the aforementioned localizations (Figure S1-S4).  Taken together, these experiments 
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demonstrated that SLA measures protein localization to multiple intracellular locales 

by flow cytometry.  

 

2.3.3 Profiling nuclear localization across cell subsets in primary samples 

Given SLA was validated above in cell lines, we leveraged the throughput of the 

method to interrogate transcription factor nuclear localization across multiple cell 

subsets in complex primary samples. SLA was adapted for use with primary PBMCs 

from healthy human donors. Light forward and side scatter properties were maintained 

by following the SLA protocol, which allowed for singlet and myeloid/lymphoid cell 

gating. The protocol was adapted to include staining with antibodies that had been 

previously selected to delineate specific immune cell subsets (Figure S3).  In addition 

to TNFα, bacterial lipopolysaccharide (LPS) was used as a NF-κB pathway activator 

to induce nuclear import of NF-κB exclusively in monocytes(43).  

 

SLA revealed differences in NF-κB nuclear translocation across cell subsets and 

between stimulation conditions. While TNFα led to nuclear import of NF-κB in both 

myeloid and lymphoid cell subsets, LPS led to nuclear import exclusively in 

monocytes (Figure 3A, 3B). By comparing SLA activity across multiple time points in 

arcsinh space(2), we observed that NF-κB response kinetics in PBMCs differed across 

pathway activation conditions and cell types. For example, in both TNFα and LPS 

treated monocytes, we observed an initial increase in nuclear NF-κB levels in the first 

15 minutes after treatment. TNFα treated cells had only a 25% additional increase in 

nuclear import between 15 minutes and 30 minutes (Figure 3A, Table S1), whereas 
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LPS-treated monocytes had an additional 70% increase in nuclear NF-κB levels 

between 15 minutes and 30 minutes (Figure 3B, Table S1). These results suggest that 

nuclear import of NF-κB in monocytes is more gradual when induced by LPS, as 

opposed to TNFα.  These observations are consistent with and build upon previous 

nuclear NF-κB kinetics studies done in vitro (44). Such differences in NF-κB response 

kinetics were observed across cell types even within the same pathway activation 

conditions.  Between TNFα-treated cell subsets, myeloid and NK cells exhibited a 

more rapid response than T cells. Following an initial increase in nuclear NF-κB levels 

in the first 15 minutes of treatment, NK cells had only a 19% increase in nuclear NF-

κB levels between 15 minutes and 30 minutes. In contrast, T cells had an additional 

66% increase in nuclear NF-κB levels between 15 minutes and 30 minutes (Figure 3A, 

Table S1). Taken together, SLA revealed that the kinetics of NF-κB nuclear 

translocation differ across multiple cell subsets, multiple conditions, and multiple time 

points in complex primary samples.  

 

The NF-κB pathway is negatively regulated by IκBα, which sequesters NF-κB in the 

cytoplasm until pathway activation leads to the degradation of NF-κB (45,46). To 

determine if IκBα showed the expected kinetics relative to p65/RelA release into the 

nucleus, we simultaneously performed SLA with intracellular staining of total IκBα. 

We confirmed the inverse relationship between nuclear NF-κB and total IκBα at the 

single-cell level, as the median fluorescence intensities of the former increased and the 

latter decreased upon treatment with TNFα or LPS (Figure 3C). These results 
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demonstrate SLA’s ability to interrogate nuclear localization simultaneously with 

upstream regulators of a cell-signaling pathway.  

 

SLA also quantified NFAT nuclear translocation in PBMCs treated with PMA and 

Ionomycin, with nuclear import of NFAT being detected in T-cells but not monocytes 

(Figure S2B). These results taken together with those for nuclear NF-κB suggest SLA 

can be a versatile determinant of regional localization and complex formation in 

primary samples.  

 

2.3.4 Measuring intranuclear relocalization to damaged DNA 

While transcription factor binding is a global event that occurs across multiple target 

loci, it was important to determine if SLA could be used to assay for other, less 

frequent, cellular events.   We therefore sought to quantify DNA repair in terms of 

specific proteins localized to damaged DNA (Figure 1B). Traditional identification 

and quantification of DNA lesions is accomplished by assaying DNA repair foci with 

microscopy (Figure S4)(47,48), which is not (under most circumstances) considered a 

high throughput regime. We focused on the tumor suppressor BRCA1, which forms 

intranuclear foci both in S-phase and upon DNA damage induction(47) (49,50). 

BRCA1 is essential for the end-resection step of DNA double-stranded break repair by 

homologous recombination (51).  DNA double-strand breaks are marked by 

phosphorylation of nearby Histone H2AX proteins at Serine 139 (γH2AX) 3. As such, 

when DNA is being repaired by homologous recombination, BRCA1 will localize to 

the DNA damage site in proximity to γH2AX. Therefore, SLA provides a convenient 
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means to measure this specific DNA repair mechanism and others like it by measuring 

proximity of specific DNA repair proteins (in this case, BRCA1) to γH2AX at the 

single-cell level (Figure 4).  

 

It is known that the DNA double-stranded break repair mechanisms are regulated 

differently at distinct phases of the cell cycle(52).  We therefore added a simultaneous 

DAPI stain (DNA content per cell) which allows for visualization of the cell cycle 

(Figure 4A)(53). To detect exclusively chromatin-bound BRCA1 in proximity to 

γH2AX, we utilized a detergent pre-extraction protocol which removes proteins from 

the nucleus which are not chromatin-bound (34).  

 

We observed a BRCA1-γH2AX interaction signal that was significantly higher in S 

and G2 phases of untreated cells (Figure 4B, Figure S6, Table S2). These results 

recapitulated previous IFM observations from foci counting(47). SLA was able to 

quantify this interaction in 20,000 cells in under a minute. Of note, there appeared to 

be two peaks in the SLA signal for untreated cells in G1, suggesting that this particular 

interaction (though relatively low) may vary in a discrete manner across G1 (Figure 

4B). Dot plots with SLA signal and DAPI provided a more detailed interpretation of 

the relationship between the BRCA1-γH2AX interaction by visualizing the cell cycle 

as a continuum rather than a series of gates (Figure 4C). We further confirmed that the 

levels of the BRCA1-γH2AX interaction (SLA signal) differ from the individual 

protein levels of BRCA1 and γH2AX across the cell cycle. This highlights the 
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additional layer of information one can obtain from measuring interactions in this 

manner (Figure 4, Figure S5).  

 

To induce DNA double-strand breaks and subsequent repair, we treated cells with 

ionizing radiation (IR) (54). In these irradiated cells, the G1 specific BRCA1-γH2AX 

interaction was significantly higher than that of untreated cells (Figure 4B, Figure S6, 

Table S2). This was an unexpected result, given that BRCA1 co-localization with 

γH2AX as viewed with microscopy is typically observed in S/G2 phase and not 

G1(47). These data suggest that BRCA1 may be playing a role in IR-specific DNA 

repair in G1 as well. Furthermore, these data suggest that SLA has sufficient 

resolution to identify interactions that are either novel or difficult to detect by 

microscopy.  

 

Taken together, these results demonstrate SLA can provide a high-throughput and 

quantitative readout of co-localization that can compliment classical lower throughput 

methods such as IFM-based foci counting. Furthermore, SLA can be enhanced with 

DAPI staining for cell cycle and detergent pre-extraction for detecting only chromatin-

bound nuclear proteins.  

 

2.4 Discussion 

  

SLA enables measurements of spatial localization with a resolution of 40nm and a 

throughput of thousands of cells per second. SLA can be performed simultaneously 
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with surface and intracellular antibody staining, allowing for interrogation of 

subcellular localization across multiple subpopulations in complex samples, like 

human PBMCs.  

 

SLA allowed for the interrogation of pathway activation in terms of transcription 

factor nuclear localization across tens of thousands of cells. In this study, we identified 

differences in NF-κB signaling kinetics across cell subsets of human PBMCs 

stimulated by TNFα or LPS (Figure 2). Furthermore, SLA allows for one to study the 

relationship between nuclear localization of a transcription factor and activation of 

upstream regulatory proteins in a signaling pathway, as we investigated with NF-κB 

and IκBα (Figure 2).   

 

The combination of SLA with surface antibodies allows for this method to be 

expanded to complex primary samples without the need for cell sorting. Given SLA 

was optimized in this report in healthy human PBMCs, this method should be readily 

expandable to study immune signaling dysregulation in disease. Signaling in tissue 

specimens may be studied with SLA as well, though one must optimize single-cell 

suspension to retain cell surface markers of interest. 

 

We further used SLA to study the DNA damage response through the proximity of 

DNA repair protein BRCA1 and DNA damage marker γH2AX across the cell cycle in 

the TYK-nu ovarian cancer cell line. We showed the cells in S/G2 have higher levels 

of BRCA1 localized to γH2AX, as compared to cells in G1. This interaction was 
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expected given that BRCA1 plays a role in the end-resection step of homologous 

recombination repair in S/G2 (55,56). Furthermore, IR treatment led to increased 

localization of BRCA1 to γH2AX in G1 as well. Our data suggest that BRCA1 could 

be playing a role in G1-specific DNA repair, such as non-homologous end joining 

(NHEJ) (56), in ovarian cancer cells.  

 

The protocol modifications specific to studying the DNA damage response have 

potential for studying additional biological phenomena. SLA was adapted for a 

simultaneous DAPI stain for cell cycle analysis without the need for cell cycle-specific 

markers or thymidine analog (eg. BrdU) treatment. This modification allows for study 

of cell cycle-specific mechanisms, like the shuttling of cyclins in and out of the 

nucleus  

(57,58).  

 

Furthermore, SLA was optimized for compatibility with detergent pre-extraction of 

cells to study exclusively chromatin-bound nuclear proteins. Thus, one can robustly 

interrogate complexes and structures across various contexts and across the cell cycle. 

These readouts have strong potential in clinical settings, where reliance on low-

throughput methods such as foci-counting with microscopy is the current gold-

standard for measuring DNA repair mechanisms important for targeted cancer therapy 

(52,59,60).  
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As needed, SLA readouts of multiple simultaneous interactions could be achieved by 

using unique backbone and insert sequences for each antibody pair of interest that will 

bind detection oligonucleotides with different fluorophores, as demonstrated in recent 

work from our lab (13). Taken together, by adapting Proximity Ligation Assay to 

study subcellular localization with flow cytometry, one can interrogate a variety of 

biological phenomena with quantitative single-cell resolution and high throughput, 

including but not limited to transcription factor dynamics and DNA repair.  
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2.7 Figures 
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Figure 1: SLA detects localization to distinct subcellular structures in single cells 

(A)  Working principle. Antibodies (Abs) to protein of interest (POI) and abundant 

material in organelle of interest are bound by oligonucleotide (oligo)-conjugated 

secondary antibodies. When secondary antibodies are in proximity, oligonucleotides 

can be circularized, amplified, and detected by fluorophore-conjugated probes. Dotted 

line indicates the length of the amplified region is much greater than depicted. (B) 

SLA has been optimized to detect nuclear localization, localization to specific regions 

in the nucleus (damaged DNA), and mitochondrial localization, (C) leading to flow 

cytometric readouts of these aspects of subcellular localization. 

 

Figure 2: SLA detects nuclear import of NF-κB in cell lines and primary samples.  
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(A) Confocal microscopy (left) and SLA (right) in THP-1 monocytic cell line. 

Magnified image in upper right is of boxed cells. DNA was stained with Hoechst 

(blue), and CD45 (green) was used as a cell surface marker. SLA readouts are for the 

double-stranded DNA (dsDNA)-histone H3 interaction (not expected to be affected by 

TNFα), and NF-κB and dsDNA interaction in THP-1 cells. (B) Confocal microscopy 

(left) and SLA (right) for NF-κB in PBMCs, illustrated as in (A) with CD33 is used as 

a myeloid cell marker. Scale bars represent 10µm (main images), 4 µm (insets). 

 

Figure 3: NF-κB nuclear import kinetics and its relationship with total IκBα in single 

cells across multiple cell subsets in PBMCs.   

(A) Time course experiment in which PBMCs were treated with TNFα for 5, 15, or 30 

minutes. SLA for the NF-κB and dsDNA interaction is indicated as “nuclear NF-κB”. 
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NF-κB nuclear translocation was calculated as the difference of inverse hyperbolic 

sine (arcsinh) medians of the indicated timepoint post-treatment compared to that 

timepoint’s untreated control. Bars represent the mean ± SEM (n = 4) (B) Same 

experimental setup as (A), but using LPS as the pathway activator. (C) SLA for 

nuclear NF-κB with simultaneous intracellular antibody staining for negative regulator 

IκBα reveals their relationship at the single-cell level across multiple cell subsets.    

 

Figure 4: SLA quantifies BRCA1 localization to DNA damage sites.  

(A) Cells were either untreated (top) or irradiated (bottom), and stained with DAPI for 

DNA content during the SLA procedure to gate between G1, S, and G2/M phase. (B) 

Gating reveals differences in the BRCA1-γH2AX interaction between cell cycle 
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phases. (C) Dot plots reveal single-cell topology of the BRCA1-γH2AX interaction as 

a function of the cell cycle.  

 

Figure S1: SLA was originally optimized for cell lines, and can detect mitochondrial 

localization. (A) Confocal microscopy (left) and SLA (right) for NF-κB interacting 

with dsDNA in the U-937 monocytic cell line (B) Confocal microscopy (left) and SLA 

(right) for mitochondria-specific interactions in human PBMCs. For SLA, myeloid 

and lymphoid cells were gated out by side scatter (SSC). Scale bars represent 10µm 

(main images in (A)), 3 µm (inset in (A)), and 5µm (main images in (B)), and 2.5µm 

(inset in (B)). 
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Figure S2: SLA detects nuclear localization of NFAT in cell lines and primary 

samples. 

(A) Confocal microscopy (left) and SLA (right) for NFAT nuclear localization in the 

Jurkat T-cell line, as detected by the interaction between NFAT and a dsDNA 

antibody. The CD45:Histone H3 and dsDNA:Histone H3 interactions represented 

negative and positive signals respectively, and were not expected to be affected by 

PMA/Ionomycin treatment (B) Confocal microscopy (left) of NFAT in PBMCs, with 

SLA (right) performed in cell subsets gated out by surface markers. Scale bars 

represent 10µm (main images), and 3µm (insets). 
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Figure S3: PBMC characterization by gating and confocal microscopy. (A) De-

barcoding treatment conditions by strength of Pacific Orange signal. (B) Gating 

strategy. Singlets were gated and debris were cleared using FSC and SSC. Monocytes 

were gated by side scatter.  Lymphocytes were gated by side scatter were further gated 

on CD3 and CD7, wherein CD3+ cells were labeled as T cells, and CD3- CD7+ cells 

were labeled as natural killer cells. (C) Confocal microscopy images taken show 

cytoplasmic localization of NF-κB in untreated conditions (left panel), both monocyte 

and lymphocyte nuclear translocation of NF-κB upon 15 minutes of TNFα treatment, 

and monocyte only nuclear translocation of NF-κB upon 15 minutes of LPS treatment. 

Scale bars represent 10µm (main images), and 3µm (insets). 

 

Figure S4: Confocal microscopy reveals the BRCA1 co-localization with γH2AX that 

SLA is able to quantify. IFM for BRCA1 and γH2AX with the same antibodies used 

for SLA in TYK-nu cells either (A) untreated and (B) treated with 10Gy of ionizing 
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radiation reveal BRCA1 and γH2AX foci that co-localize within the nucleus, as 

delineated by DAPI.  Scale bars represent 10µm. 

 

Figure S5: Dot plots of immunostaining for the γH2AX and BRCA1 antibodies used 

in SLA to delineate raw levels of the respective proteins as a function of the cell cycle 

in (A) untreated and (B) irradiated cells.  
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Figure S6: Ionizing radiation induces a G1-specific increase in BRCA1-γH2AX 

interaction in TYK-nu ovarian cancer cells. Bar plot for the experimental setup shown 

in Figure 4. Bars represent the mean ± SEM (n = 8). Statistical analysis was performed 

by two-tailed welch two sample t-test for the comparisons indicated. **p<0.01, 

*p<0.05, ns, not significant. T tests: column 1 v 2: t = -4.4046, df = 7.0798, p-value = 

0.003055. Column 1 v 3: t = -4.1951, df = 7.7258, p-value = 0.00326. Column 2 v 4: t 

= -1.0319, df = 11.968, p-value = 0.3225. Column 3 v 4: t = -3.0896, df = 7.6375, p-

value = 0.01577.  
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Table S1: Arcsinh transformed nuclear NF-κB MFI values in PBMCs. Raw data used 

to make the bar graphs in Figure 3A and 3B. sem, standard error of the mean. pop, 

population. stim, cytokine treatment (see Methods). Numbers are arcsinh transformed 

differences between the SLA signal during the given timepoint, and the untreated 

control tube for the given timepoint. MFI, median fluorescence intensity. 
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Table S2: Raw Median Fluorescence Intensity of BRCA1-γH2AX SLA in TYK-nu 

cells. Data used to construct Figure S6. Mean and standard error of the mean (SEM) 

were used as bars and error bars respectively in said figure. Values are median 

fluorescence intensity (MFI).  
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Chapter 3: Continuous visualization of differences between 

biological conditions in single-cell data 

3.1 Abstract 

In high dimensional single cell data, comparison of functional responses across 

biological conditions typically requires partitioning of cell populations (clustering or 

gating). To address this, we developed Smooth Comparison of NEighbors (SCONE), 

an algorithm that performs statistical comparisons of functional response markers in 

continuously overlapping phenotypic neighborhoods. SCONE output is intended to be 

used for coloring lower-dimensional embeddings (eg. t-SNE maps), heatmaps or 

biaxial plots, thus directly visualizing local changes within immune cell subsets across 

biological conditions. We applied SCONE to a B cell precursors dataset from human 

bone marrow to reveal the coordination between surface marker expression changes 

and IL-7 responsiveness through pSTAT5 in the B-cell developmental trajectory. 

SCONE allows for a direct visualization and analysis of changes and trends at the 

single cell level across multiple biological conditions in a wide variety of model 

systems. This will provide useful information that could reveal direct biological 

insights and help inform downstream analysis.  

 

3.2 Introduction 
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Novel technologies have emerged providing high parameter information from single 

cells, providing many opportunities to study the diversity of complex biological 

systems. These technologies include CyTOF (2), MIBI (27), and single-cell 

sequencing (61). Manifold embedding algorithms have been adapted to mass 

cytometry such as force-directed graphs (62) (25), t-SNE (24,63), and principal 

component analysis (PCA) (64) to visually represent the distribution of cells in high-

dimensional space near each other in two dimensions. This provides an intuitive 

readout of the diversity of a given dataset and provides insight into a system’s 

superstructure. Despite providing a visual and intuitive manner to explore single-cell 

data, dimensionality reduction plots are based on single cells and therefore to date 

have not allowed for direct visualization and quantification of differences between 

biological samples.  

 

To perform such comparisons, researchers routinely resort to first partitioning the 

concatenated dataset into disjoint subsets (clusters or gates) based on surface markers 

that are not expected to change between conditions, and then for each subset 

performing sample-to-sample comparison of markers that are expected to change 

(functional markers). This approach allows visualization of discrete changes such as 

signaling differences between subsets(9,18-20,22,65,66). However, we deemed that it 

would be useful to be able to visualize the patterns of functional marker change in a 

continuous manner independently of partitioning (clustering/gating). One could 

immediately see the patterns of signaling response and use them to locate and extract 

the cell populations where the functional changes are localized. 
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Recently, a method was developed that tests for visualizing differential abundance of 

cells across biological conditions using per-cell overlapping hyperspheres in high 

dimensional data(67). Here, we present a computational method that focuses on 

changes in marker expression across biological conditions. Our method is called 

SCONE, which stands for Smooth Comparison of Neighbors. SCONE makes 

statistical comparisons in overlapping k-nearest neighborhoods (KNN) rather than 

mutually exclusive clusters. Thus, each cell represents the information contained 

within itself and its KNN (which contains all biological conditions of interest). By 

applying normalization and choosing the markers that do not change across biological 

conditions for KNN calculations, the conditions being compared can be assumed to be 

distributed evenly in the marker space such that each cell and its KNN will contain 

data points from all biological conditions in question. We provide an objective 

statistical test that checks if this assumption is true and thus provides feedback on the 

tube-to-tube marker variation, and efficacy of normalizations. For each k-nearest 

neighborhood, the algorithm quantifies the differences in expression of each functional 

marker between cells belonging to two respective biological conditions. Given that k-

nearest neighbor sets of adjacent cells are partially overlapping, SCONE can visualize 

and locate the boundary and shape of functional marker change patterns across the 

manifold, and view these changes at the single cell level prior to partitioning the data.  

 

We used SCONE in conjunction with a tSNE based output, to study the changes in 

cell subsets occurring after an ex vivo perturbation. In human B cell precursors, we 
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show the precise location of an IL-7 sensitive population in the developmental 

trajectory.  

 

3.3 Methods 

 

3.3.1 Mass cytometry experiments 

Mass cytometry data used in this manuscript, together with the information regarding 

cell preparation, data acquisition, and processing was obtained from the original 

publications  

(5,26,68). Through the rest of the manuscript, we will call these respective datasets by 

their first and/or co-first authors: Bodenmiller/Zunder/Finck, Bendall/Davis/Amir, and 

Fragiadakis.   

 

3.3.2  Data input 

A schematic of the algorithm’s workflow is provided (Figure 1A). In brief, cells from 

a basal condition and one or more stimulatory conditions are concatenated into a 

single matrix of cells by features, with an additional column denoting condition. The 

software produces this matrix from a list of fcs files the user provides as input. These 

cells are then subject to an appropriate normalizing transformation (e.g. arcsinh-

transformed with a cofactor of five, which became a de facto standard for CyTOF 

analysis(2)).  The user then has the option to do per-marker quantile normalization 

(69) and/or z-score transformation, as a means to correct batch effects and reduce 
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sample-to-sample variability (see Correcting for technical artifacts in the data for 

efficacy analysis). Each cell’s k-nearest neighbors are determined with user-chosen 

input markers (in our case, surface markers) using Euclidean distance in the Fast 

Nearest Neighbors (FNN) R package. 

 

3.3.3 Per-cell comparisons 

For each k-nearest neighborhood, for each functional marker of interest, two values 

are calculated. The first is the raw change between the two biological conditions, 

which is defined as the difference between the median value of one condition and the 

condition the user defines as “basal.” The second is a p-value output from a user-

chosen statistical test (currently, Mann-Whitney U test (70) or T test (71)) between the 

distributions of marker values for each biological condition. Accordingly, the p-value 

is adjusted for false discovery rate using p.adjust function within R. We therefore call 

the statistical test output q-values. Following this, we give the user the option to 

threshold the raw changes by q-value. In other words, if the q-value for a given k-

nearest neighborhood is lower than a user-defined cutoff (e.g. 0.05), then the raw 

change will be reported. Otherwise, the raw change will take on the value zero.  

 

3.3.4 Per-replicate comparisons 

In experimental setups with replicates, the user has an option to make per-replicate 

comparisons across multiple biological conditions. For each k-nearest neighborhood, 

for each marker of interest, the user-chosen median or mean values of expression are 
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computed for each replicate designated as “control” condition and each replicate 

designated as an “experimental” condition (e.g. stimulated cells). These values are 

then used as input in a t-test comparing basal versus experimental per-replicate 

expression for the given marker. The resulting output is the replicate comparison p-

values . Like the per-cell p-values, they are corrected for false discovery rate using the 

p.adjust function within R. They are therefore also referred to as q-values, as shown in 

basal versus LPS-treated healthy human whole blood (68) (Figure S1). 

 

3.3.5 Structure of SCONE output 

These per-replicate and/or per-cell statistics are appended column by column to the 

end of the original single cell expression matrix (the content of the FCS file). Each 

new column is either a q-value or a raw change of a single functional marker and 

therefore can be parsed as one would with normal cytometry data. The user then has 

the option to run t-SNE within our software and add the t-SNE embedding coordinates 

as columns to the end of the data matrix. We recommend the user choose the same 

input markers as those that went into the KNN calculation. We show an example of 

our output using these t-SNE maps of basal versus IL-10 treated whole blood from a 

previously published mass cytometry dataset (68), comparing raw pSTAT3 expression 

values with their q-value and raw change values calculated by our algorithm within k-

nearest neighbors, with surface marker expression shown to reference specific cell 

subsets (Figure 1B, C). While visually it’s hard to call out the differences between the 

basal and the IL-10 stimulation conditions, the SCONE algorithm effectively 

highlighted the responsive cell populations as well as subtle patterns of responsiveness 
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within those populations. For instance, the CD14+ CD33+ monocyte population 

exhibited a stronger response to IL-10 stimulation through pSTAT3 than the adjacent 

CD33- CD16+ population (Figure 1C, right panel).  

 

3.3.6 Selection of the number of nearest neighbors 

We chose the optimal number of nearest neighbors (k) by solving the functional 

marker imputation problem, i.e. by determining how well the functional response 

markers could be predicted from the respective values of the k-nearest neighbors. 

Specifically, for each cell we computed median values of the functional variables from 

its k-nearest neighborhood. We then optimized the k value (neighborhood size), using 

a dataset median of the Euclidean distance between the actual functional variable 

vector for a given cell and the imputed median vector as a loss function (72). We 

evaluated this optimization on a previously published mass cytometry dataset 

consisting of human PBMCs across a variety of stimulatory conditions on the 

Bodenmiller/Zunder/Finck and Bendall/Davis/Amir datasets. We observed that across 

a range of k values ranging from n/5 to n/1000, the relationship between log10(k) and 

the imputation loss was parabolic, with a clearly defined minimum. As such, one 

could find the value of k that effectively minimized the imputation loss (Figure S2. 

We found that for n = 10,000 PBMCs in these data, the ideal k was determined to 

range between n/20 to n/100 depending on stimulatory condition. We expect this value 

to differ depending on datasets and biological conditions being used. If the calculated 

ideal k value differs between biological conditions being compared, we recommend 

choosing a value k that is the mean of ideal k values found across the biological 
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conditions. Within our software, we provide the user the ability to use this metric for 

the dataset in question prior to executing the SCONE workflow, and we recommend 

this be done before each new analysis. 

 

We next sought to determine if sparse regions of the data would require a different 

value of k to minimize the imputation error. To test this, we used our same k titration 

from the Bodenmiller/Zunder/Finck PBMC dataset to examine the value of k that 

minimizes the per-cell imputation error, rather than the global imputation error (which 

was the median of the per-cell imputation error). As we expected, different cells had 

different ideal k values. However, in all conditions tested, the ideal k per cell did not 

correlate with the density of our data (Figure S3). Thus, we provide the user with 

software to test and find the ideal global k for the dataset being analyzed, but we do 

not need to adjust the per-cell k as a function of the data’s density. 

 

3.3.7 Correcting for technical artifacts in the data 

There may be shifts in marker expression levels between biological conditions 

attributed entirely to technical artifact. This would affect the accuracy of the statistics 

within each cell’s KNN. To address this, we provide the user with the ability to 

perform quantile normalization, and/or z-score transformation of each feature going 

into the KNN generation. We see this as an important pre-processing step primarily 

with datasets in which multiple donors are combined. Accordingly, our software 

automatically outputs the per-KNN fraction of cells belonging to each non-baseline 

biological condition compared to the user-designated baseline for each KNN. If we let 
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𝑥"  equal the user designated baseline condition and 𝑥#  equal the ith non-baseline 

condition, then we let 𝛼% be a function that takes in two conditions as input (here 𝑥# 

and 𝑥"), and outputs the fraction of the cells belonging to a condition 𝑥# divided by the 

number of cells belonging to both 𝑥# and 𝑥", in the k-nearest neighborhood of nth cell.  

 

𝛼%(𝑥#, 𝑥") 	= 	
𝑐𝑜𝑢𝑛𝑡%(𝑥#)

𝑐𝑜𝑢𝑛𝑡%(𝑥#) + 𝑐𝑜𝑢𝑛𝑡%(𝑥")
 

 

We then let vector 𝛼(𝑥#, 𝑥") contain all values outputted by 𝛼%(𝑥#, 𝑥") for all cells 

within the dataset. A different 𝛼(𝑥#, 𝑥")  is calculated for each non-baseline 𝑥# 

condition in the dataset (as it compares to the user-designated baseline condition 𝑥"). 

 

𝛼(𝑥#, 𝑥") = 	 {𝛼2(𝑥#, 𝑥"), 𝛼3(𝑥#, 𝑥"), 𝛼4(𝑥#, 𝑥"), 𝛼5(𝑥#, 𝑥"), …	, 𝛼%(𝑥#, 𝑥")} 

 

Using 𝛼(𝑥#, 𝑥")  for a given non-baseline condition, we sought to quantify the 

“overlap” of data between conditions for the expression markers not expected to 

change, and further test efficacy of normalization and scaling procedures in terms of 

this overlap. We used the Bodenmiller/Zunder/Finck dataset along with the newer 

Bendall/Davis/Amir dataset (26), and we assessed the α of cells treated with GM-CSF 

or IL-7, respectively. Given that we performed KNN on surface markers that are not 

expected to change with a 15-30-minute ex vivo perturbation, we expected each α to 

be near 0.5 if there were minimal technical artifacts. Our primary focus was to test the 

distribution of this KNN fraction across datasets with and without per-marker quantile 
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normalization and scaling of parameters with a z-score transformation prior to 

generating KNN. As an evaluation metric, we calculated the standard deviation of the 

α distributions with each normalization/scaling method, and visually displayed this 

output as a histogram. 

 

With each dataset, we also randomly subsampled the user-designated baseline sample 

without replacement twice, treated each subsample as if it came from a separate 

condition, designating the subsamples as “conditions” 𝑠2  and 𝑠3 . Our data quality 

reference was the standard deviation of 𝛼 𝑠2, 𝑠3 . Our final score was the quotient of 

the standard deviation of 𝛼 𝑠2, 𝑠3  from the subsampled file and 𝛼 𝑥#, 𝑥"  from the 

baseline condition and “stimulated” condition files. We call this value the manifold 

overlap score, or 𝑚.  

 

𝑚 = 𝜎 𝛼 𝑠2, 𝑠3 𝜎 𝛼 𝑥#, 𝑥"  

 

In both cases, we found that per-marker quantile normalization followed by scaling of 

the data best minimized the standard deviation of 𝛼 𝑥#, 𝑥" , and therefore maximized 

m (Figure S3A, B). Of note, the Bendall/Davis/Amir dataset is relatively newer, and 

therefore in all cases had a higher m than the Bodenmiller/Zunder/Finck dataset 

(Figure S3B). Given that the instruments and pre-processing are constantly being 

updated, we expect the newer datasets to have more marker expression overlap across 

runs.   
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We further validated the ability to detect change with SCONE after normalization 

and/or scaling in both datasets. With the Bodenmiller/Zunder/Finck dataset, we show 

that in all cases, pSTAT5 increase in CD33 positive cells could be detected after GM-

CSF treatment (Figure S4A). With the Bendall/Davis/Amir dataset, we show that in all 

cases, a small population demarcated by pSTAT5 increase could be detected after IL-7 

treatment (Figure S4B). 

 

We recommend the user performing these same tests with the data of interest, as the 

need for normalization and scaling may vary with each dataset. We provide the 

software for this accordingly. Of note, while normalization methods can be of help in 

certain situations, one cannot possibly rely on a normalization method to “fix” data 

that has lots of technical artifacts, so special care must always go into the experimental 

design and data acquisition.  

 

3.3.8 Visualization of output 

For this manuscript, we use t-SNE as the primary mode of visualizing the single cell 

information that is obtained, coloring each cell on the map by the comparison values 

(raw change, q-value) between biological conditions for features of interest. Although 

t-SNE is an effective way to reduce high dimensional data into two dimensions, there 

are other methods that could just as effectively visualize the data that are beyond the 

scope of this manuscript, and other methods may be more optimal than t-SNE 

depending on the biological question and the number of cells being used as input. We 

nonetheless provide the user with the option of running t-SNE on the data, which will 
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then add two columns to the data matrix containing the t-SNE1 and t-SNE2 features. 

This is done using the Rtsne R package, which in turn uses the accelerated Barnes-Hut 

implementation (73). We recommend the input features into this function to be the 

same as the input features that went into the k-nearest neighbor generation.  

 

3.4 Results 

 

3.4.1 Visualizing IL-7 responsiveness along the B cell developmental trajectory 

The aforementioned Bendall/Davis/Amir dataset was from a study on B cell 

development using mass cytometry and a novel computational approach called 

Wanderlust to infer a developmental trajectory in static samples of B cell precursors 

manually gated from healthy human bone marrow (26). This previous study found a 

rare population effectively defined by responsiveness to IL-7 through pSTAT5. 

However, this population’s responsiveness to IL-7 in comparison to other populations 

could only be interrogated by manual gating or clustering untreated and treated 

samples.  

 

We first compared the identification of this population with SCONE to doing so with 

clustering. To this end, using data sub-sampled to 10,000 cells, we performed k-means 

clustering varying the number of clusters from 10 to 1000. We then performed 

SCONE on the same data with our optimized k of 100 (see selection of the number 

of nearest neighbors). We ran t-SNE on the concatenated SCONE and clustered data 
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such that IL-7/pSTAT5 sensitive population would lie on the same region in t-SNE 

space in all cases. Statistics were computed either per-KNN or per-cluster. We then 

colored each cell by its per-KNN or per-cluster q-value derived from a FDR-adjusted 

Mann-Whitney U test between pSTAT5 expression in untreated versus IL-7 treated 

cells (Figure S5A), and per-KNN or per-cluster pSTAT5 raw change value between 

baseline and IL-7 (Figure S5B). 

 

With k-means clustering, we found that this population was demarcated with statistical 

power comparable to SCONE only if the number of clusters was set to 500 (1/20 the 

number of cells in the dataset) or below. However, unlike the KNN neighborhoods 

that are all the same size by definition, clusters tended to be of an uneven size, which 

at high cluster numbers (along with the smaller cluster size here), led to increased 

noise in the output of pSTAT5 raw change values and declining statistical power. In 

addition, while the KNN-based output produced soft boundaries of this functional 

population, the k-means clustering was creating partitions with rigid boundaries, 

sometimes grouping together unrelated cell populations with varying stimulation 

response patterns. Taken together, this led to a tradeoff between bias and variance of 

statistical estimation, where the relevant IL7-pSTAT5 population was visible only 

depending on a specific cluster number setting. 

 

To directly visualize the location of this subset was within the B cell developmental 

trajectory, we ran SCONE on these untreated and IL-7 treated samples. We first 

visualized the data with t-SNE to determine where this population was in relation to 
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related cell surface markers along wanderlust values. Wanderlust values are the 

algorithmically-derived ordering of cells along a virtual developmental trajectory. 

Coloring the t-SNE maps by wanderlust values allowed for visualization of the 

inferred static and transition states within the populations (Figure 2A). This pSTAT5 

responsive population was distinguishable easily through the SCONE values, as 

opposed to the general pSTAT5 levels of the untreated and IL-7 treated cells (Figure 

2A bottom-right, Figure S6). The t-SNE maps of the SCONE values allowed for 

validation of a previously described B cell precursor subset with increased IL-7 

responsiveness through pSTAT5. These pSTAT5 SCONE values showed visually that 

IL-7 responsiveness through pSTAT5 increases immediately upon increase in levels of 

specialized DNA polymerase TdT, and decreases immediately upon concurrent 

upregulation of CD24 (Figure 2A).  

 

To identify this subset’s relationship to coordination points in the developmental 

trajectory, we produced a heatmap colored by relative values of each marker ordered 

by cells occupying binned wanderlust values (Figure 2B). This heatmap revealed that 

the pSTAT5 increase is also coordinated with an increase in CD179a, CD38 along 

with TdT, and decrease is coordinated with an increase in CD10 along with CD24. 

Thus, two points of coordinated change in surface marker levels are connected by a 

small but distinct IL-7 responsive population. We found this architecture to be 

consistent across four healthy human donors (Figure S6).  
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3.5 Discussion 

 

The SCONE approach presented here allows for statistical comparison of marker 

expression in multiple biological conditions by partitioning the cells into exhaustively 

overlapping subsets rather than disjoint subsets. We used t-SNE for visualization, but 

because the k-nearest neighborhoods are calculated in the original high dimensional 

manifold, any dimensionality reduction technique could be used for visualizing the 

results, as each cell will still report statistics the user chose to acquire within the KNN. 

 

We produced and provide a method that allows the user to determine the optimal k 

within each individual dataset by minimizing the global imputation error for all 

functional markers of interest. This leads to an interesting fundamental question 

beyond the scope of this manuscript about how well a given set of markers can predict 

expression of another set of markers within a given CyTOF dataset.  

 

We provide per-marker quantile normalization and z-score transformation methods for 

data pre-processing. Here, we use our k-nearest neighbors architecture to investigate 

the per-KNN overlap of cells across two biological conditions where the input features 

(surface markers) are not expected to change, which we designate as manifold overlap, 

or m. We then use this to evaluate per-tube variation across two datasets before and 

after the use of our normalization metrics. Outside of dataset quality and 

computational normalization metrics, the m score could be used to evaluate many 

experimental conditions, including new or existing blood preservation systems, 
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barcoding systems, and automation systems. Furthermore, our α(xi, xb) vector 

construction could be used in model systems where cell subset abundance changes are 

expected, like the immune system in animal infection models. Here, t-SNE 

visualization of the per-cell αn(xi, xb) output could provide preliminary information as 

to which cell subsets are changing prior to any partitioning steps.  

 

When we compare the q-values for marker expression change overlapping k-nearest 

neighbors to k-means clustering, we show that the statistical power of such 

comparison decreases as the number of clusters increases (and therefore cluster size 

decreases and more variable). Given that clustering and gating are indispensable 

families of methods to identify cell subsets of interest, we see SCONE as a 

complimentary method that could be used initially to highlight functional changes that 

could then perhaps be used as input for downstream partitioning steps.  

 

Using a previously published dataset consisting of B cells purified from healthy 

human bone marrow, we demarcated the boundaries of IL-7 responsiveness through 

pSTAT5 in relation to other relevant surface markers. We revealed that both the 

emergence and exit of IL-7 responsiveness through pSTAT5 across the developmental 

trajectory marked two distinct coordination points, where surface markers abruptly 

changed as well. Of note, the IL-7 responsive population was previously elucidated by 

mean of a manual gating analysis based on a combination of TdT (high) and CD24 

(low) markers (26). We showed without gating or clustering that the IL-7 responsive 

population emerges upon increase in TdT, and decreases upon increase in CD24. 
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Given that TdT levels are high throughout the IgH gene rearrangement step of 

developing B cell precursors (74), the data suggest that cells are responsive to IL-7 

through pSTAT5 during the early stages of this process. Our analysis explicitly shows 

that the subsequent IL-7 pSTAT5 pathway rewiring previously described (26) occurs 

concomitantly with changes in the expression of multiple surface markers.  

  

SCONE can be used as a discovery and visualization tool for high-dimensional data, 

providing functional information prior to gating or clustering steps in data analysis 

pipelines.  This approach is not limited to flow and mass cytometry. We expect our 

KNN-based approach to be of use with high-parameter imaging and single-cell 

sequencing data, which are approaching dimensionality and throughput levels 

sufficient for this type of analysis.  
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3.8 Figures 

 

 

Figure 1: Schematic of the SCONE algorithm and its output. (A) (left) Cells from two 

or more biological conditions are used as input for k-nearest neighbors (KNN) 

generation, using user-defined features. (middle) Each KNN is a matrix of cells by 

features, which include functional markers hypothesized to change between 

conditions, along with an additional column demarcating which biological condition 

was used. (right) Statistical tests are performed between the distributions per feature, 

and Arsinh differences are thresholded by respective FDR-adjusted q values. (B) t-

SNE map of whole blood colored by surface marker expression revealing specific cell 
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subsets of interest, to be used in the context of functional change analysis (C). 

Visualization of pSTAT3 expression in fresh blood in untreated and IL-10 treated 

cells, along with the SCONE-derived visualizations of the –log10 FDR-adjusted q 

values from a per-KNN Mann-Whitney U test, and raw pSTAT3 change thresholded 

on a q value of less than 0.05. **, q < 0.01.  

 

 

Figure 2: Adding functional statistics to single cell trajectory visualizations. (A) t-SNE 

map of B cell precursor data, colored by Wanderlust values and surface marker 

expression levels, and SCONE-derived q value thresholded change in pSTAT5 

between untreated and IL-7. (B) Cells were binned and ordered by their Wanderlust 

values, visualized top to bottom on a heatmap. Marker expression values along with 

aforementioned change between untreated and IL-7 (solid black box) were merged 
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onto the same heatmap. Dashed lines indicate “coordination points,” where expression 

values of many markers change simultaneously.  

 

 

 

Figure S1: Per-KNN statistical tests can reveal differences both across cells and across 

donors or replicates. (A) t-SNE maps colored by surface marker expression. (B) Per-

cell Mann-Whitney U test or per-donor t test (n = 4) median values of pMAPKAPK2 

expression between untreated and LPS-treated cells. **, q < 0.01. 
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Figure S2: Computational strategy for selection of the number of nearest neighbors 

(A) Workflow for using various user-selected values of k to impute signaling marker 
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levels from surface markers, and minimizing the error between imputed “cell” and 

actual cell. (B) Parabolic relationship between selection of (k) and the imputation error 

in healthy human PBMCs untreated or treated with various immunomodulatory 

agents, with the minimum value per chart being displayed. n, number of cells used as 

input.  
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Figure S3: Per-marker quantile normalization and per-file z-score transformation 

(scaling) increase the overlap of two high dimensional manifolds being compared. (A) 

Human PBMC dataset from Bodenmiller/Zunder/Finck. (Top) Per-KNN ratio of cells 

belonging to condition 1 versus condition 2 is used as an evaluation metric, with mean 

and standard deviation of these values evaluated and histograms plotted. (Bottom) As 

a control, the untreated file is randomly sampled into two “conditions” for 

comparison, and the same workflow is performed. Manifold overlap score (m) is the 

quotient of the standard deviation of the twice-sampled untreated file and that of the 

comparison between two conditions (B) Human B cell precursor dataset from 

Bendall/Davis/Amir with the aforementioned workflow.  

 



	 74	

 

 

Figure S4: Quantile normalization and z score transformation (scaling) do not affect 

the visualization of functional populations. (A) t-SNE maps of 

Bodenmiller/Zunder/Finck human PBMC dataset. GM-CSF leads to a statistically 

significant increase in pSTAT5 (bottom row) in cells also expressing CD33 (top row). 

(B) t-SNE maps of Bendall/Davis/Amir B cell precursor dataset reveal a population 

with a statistically significant pSTAT5 increase after treatment with IL-7.   
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Figure S5: A comparison between k-nearest neighbors and k-means clustering for 

multiple biological condition analysis in the Bendall/Davis/Amir B cell precursor 
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dataset. (A) t-SNE maps colored by q values from the Mann-Whitney U test between 

each cell’s k-nearest neighbors, or each cell’s cluster membership for K-means 

clustering with a k set to values between 10 and 1000, for a 10,000 cell dataset. The k-

nearest neighbors-identified IL7-pSTAT5 population is also revealed by k-means 

clustering, but lower number of clusters increase the apparent size of the population, 

and higher number of clusters lower the statistical significance of the observation. (B) 

t-SNE maps colored by change in pSTAT5 levels, with the same setup as in (A). A 

lower number of clusters reveal the k-nearest neighbors identified population, but 

leads to pSTAT5 change values lower than what was found with k-nearest neighbors 

across a larger number of cells. A higher number of clusters leads to an increase in 

noise across the dataset.  
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Figure S6: IL7 responsive population through pSTAT5 is consistent across four 

healthy human donors.  Heatmaps for each donor, named donor 1-4, are shown. 

Wanderlust values are binned, and each bin contains the mean value of the given 

marker of interest for the cells in that bin. Black box indicates the change in pSTAT5 

between untreated and IL7-treated cells for each cell’s given k-nearest neighborhood. 
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Dashed lines indicate “coordination points,” where many surface markers were 

observed to change simultaneously.  

 

 

Figure S7: Runtime analysis of SCONE as a function of the number of cells. Total 

time in minutes includes finding KNN, performing statistical comparisons (Mann-

Whitney U test, and q value thresholded change) within these nearest neighborhoods, 

and performing t-SNE on same features that were used as input for the KNN (in this 

case, surface markers).  
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Chapter 4: Conclusions and Perspectives 

 

I began this thesis discussing organismal and single-cell biodiversity through the 

context of a longstanding genetic algorithm with a planet-sized multi-niche search 

space. Importantly, this gave rise not only to phenotypic expansion outward into these 

niches, but also expansion up the axis of complexity. At each level of organization 

from DNA strand to multicellular organism, new layers of emergent order arose over 

time as life continued to optimize itself to the environment. The work presented here 

centers primarily on uncovering the emergent order of the immune system, as it is 

sufficiently well studied that many biological facets can be validated as the new 

technologies are tested.  

 

Importantly, as a cancer biologist by training who believes that it is a curable disease, I 

operate under the hypothesis that there exists an emergent order within cancer that is 

exploitable. In this context, high parameter high throughput single cell methods like 

CyTOF and associated algorithms like SCONE serve as powerful emergent order 

finders. Subsequent studies are already using CyTOF with SCONE to study leukemia 

and ovarian cancer. The application to cancer will bring about a new generation of 

cancer diagnostics and treatments that will hopefully bring us one step closer to the 

cure.  
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The body of work presented in this thesis is the result of numerous collaborations 

within our lab and between labs. I am grateful for the support of my advisor Garry 

Nolan, and the additional mentorship of Wendy Fantl throughout my graduate school 

trajectory.  

 

I look forward to the future of high throughput high parameter single cell analysis. 

Many emerging technologies are entering this relatively new field, each filling out a 

specific niche. If we maintain a collaborative atmosphere moving forward, and set 

rigorous wet-lab and dry-lab paradigms along the bleeding edge, then the novel 

findings from these methods will effectively translate to the clinic. Beyond this, the 

emergent order we continue to find with these new technologies will enchant the 

minds of biologists for years to come.   
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